首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新疆大红柳滩伟晶岩型锂矿床近年来找矿取得了新进展。我们在该地区典型锂矿脉(90-1号)首次鉴定出磷铁锂矿,其在伟晶岩中呈树枝状、团簇状集合体分布岩脉的边缘带和中部。边缘带尤为富集磷铁锂矿,含量可达10%~15%。本文系统地开展了磷铁锂矿的岩相学和矿物学研究。利用电子探针和激光剥蚀等离子质谱测定了脉体边缘带和中间粗粒锂辉石-白云母-石英带磷铁锂矿的主微量元素含量。结果表明,磷铁锂矿除含有主要元素P、Fe、Mn及Li外,还含有较高的Mg、Ca和Zn,几乎不含高场强元素、稀土元素。综合电子探针和LA-ICP-MS分析结果,认为伟晶岩脉中部分磷铁锂矿已被氧化,成分向铁磷锂锰矿过渡。从脉体的边缘带往中间带,磷铁锂矿中Mg和Zn平均含量下降,而Mn/(Mn+Fe)比值由0.388升至0.409,显示逐渐富Mn特点,与前人关于花岗伟晶岩熔体演化过程中Fe-Mn的分离趋势一致,也与该伟晶岩脉中铌钽铁矿早期演化阶段Mn/(Mn+Fe)比值变化趋势相同;磷铁锂矿被晚期氟磷灰石部分交代,反映伟晶岩演化至热液阶段F、Ca活度增加。表明该矿物可以很好的记录伟晶岩岩浆及热液阶段的演化。  相似文献   

2.
A detailed mineralogical investigation using the classical methods of identification by X-ray diffraction and by optical properties in thin sections, has revealed thirty one phosphate minerals occurring in the Tsaobismund pegmatite. This investigation is complemented by wet chemical and, mainly, electron microprobe analyses performed on the phosphates known to be typomorphic or considered to be relevant to the hydrothermal alteration. Additionally, microprobe analyses are also given for garnet, gahnite, and ferrocolumbite associated with the phosphates. On the basis of their chemical composition, particularly in terms of their Fe, Mn, and Mg contents, three types of triphylites are distinguished. Triphylite 1 only occurs as a primary phase, triphylite 2 shows exsolution lamellae of sarcopside, and triphylite 3 is partly replaced by a fluorophosphate of the triplite-zwieselite series. These minerals constitute three generations of the parent phases, which were progressively transformed by metasomatic processes, hydrothermal alteration, and by weathering, to give finally three types of complex associations. The Li(Fe,Mn)PO4 minerals appear to be more sensitive to such transformations than those of the (Fe,Mn)2PO4F series. Four main stages of hydrothermal alteration processes have been recognized in the Tsaobismund pegmatite: (i) the Mason-Quensel sequence results from a progressive oxidation of Fe and Mn, and a concomitant Li-leaching of triphylite yielding ferrisicklerite and heterosite, successively; (ii) the metasomatic exchange of Na for Li produces alluaudite; in the present case, the formation of hagendorfite from triphylite 2 is considered to be earlier than the generation of alluaudite-Na occurring in the three associations; (iii) the hydration phase mainly transforms the parent Li(Fe,Mn)PO4 phase into grey hureaulite, associated with barbosalite and tavorite; (iv) the formation of fluorapatite, not particularly widespread, replaces alluaudite-Na, as well as zwieselite s.l. The following crystallization sequence of the initially formed phosphate minerals is proposed: triphylite 1 triphylite 2 + sarcopside (associated with garnet) triphylite 3 + zwieselite s.l. The most prominent feature of this succession is the increase in the Mg and Zn contents in the composition of the phosphates, as well as the decrease in their Li contents. The variations of the Fe/Mn ratios in this sequence are discussed. The succession triphylite-zwieselite within weakly differentiated and Li-poor pegmatites is of general significance.  相似文献   

3.
Summary Internal structure and mineralogy facilitate distinction of four main pegmatite types at the eastern end of the Pyrenees. Three main trends in compositional variations in Nb-Ta-Sn-REE-Ti minerals have been established: a regional trend, with Ta/(Ta + Nb) ratio increasing towards the more evolved pegmatites, Mn/(Mn + Fe) being relatively low and increasing only slightly; a single-body trend, with similar enrichment toward the late pegmatite units; a single-crystal trend, with zoning related to both Ta/(Ta + Nb) and Mn/(Mn + Fe) ratios and a tendency toward Ta-enrichment in the late growth stages. The regional geochemical enrichment trends in the Mn/(Mn + Fe) ratios and Ta/(Ta + Nb) are those expected for a beryl-columbite pegmatite type. In a single pegmatite, the evolution depends on the simultaneous growth of other mineral species. Three factors seem to control the development of zoning in columbite-tantalite crystals: availability of Mn, Ta, Fe, Nb, significant differences in solubility between mineral group end members and re-equilibria with late pegmatite fluids.
Nb-Ta-Minerale aus dem Pegmatit-Feld vom Cap de Creus, östliche Pyrenäen: Verteilung und geochemische Trends
Zusammenfassung Am Ostrand der Pyrenäen können anhand des inneren Aufbaus und der Mineralogie vier Haupttypen von Pegmatiten unterschieden werden. Die Zusammensetzungen von Nb-Ta-Sn-SEE-Ti-Mineralen folgen drei Haupttrends: einem regionalen Trend, bei dem das Verhältnis Ta/(Ta + Nb) zu den höher entwickelten Pegmatiten hin zunimmt, während Mn/(Mn + Fe) relativ niedrig ist und nur leicht zunimmt; einem lokalen (auf das jeweilige Vorkommen beschränkten) Trend mit einer ähnlichen Anreicherung zu den spätpegmatitischen Einheiten hin; einem auf Einzelkristalle bezogenen Trend mit Zonierung in bezug auf die Verhältnisse Ta/(Ta + Nb) und Mn/(Mn + Fe) und einer Tendenz zur T a-Anreicherung in den späten Wachstumsphasen. Die regionalen geochemischen Anreicherungstrends in den Mn/(Mn + Fe)- und Ta/(Ta + Nb)-Verhältnissen entsprechen jenen, wie sie für den Beryll-Columbit-Pegmatit-Typ erwartet werden. In einem einzelnen Pegmatit hängt die Entwicklung vom gleichzeitigen Wachstum anderer Mineral-Spezies ab. Drei Faktoren scheinen die Ausbildung einer Zonierung in Columbit-Tantalit-Kristallen zu kontrollieren: das Angebot an Mn, Ta, Fe und Nb, deutliche Unterschiede in der Löslichkeit der Endglieder von Mineralgruppen und die Iteequilibrierung mit spätpegmatitischen Lösungen.


With 6 Figures  相似文献   

4.
Granitic pegmatites are widespread within a schist-metagreywacke complex in the Fregeneda-Almendra area (Central Iberian Zone). They intrude pre-Ordovician metasedimentary rocks and show a zonal distribution relative to the Meda-Penedono-Lumbrales granitic complex, from barren bodies to those enriched in Li, F, Sn, Nb>Ta, P and Be. Based on mineralogical criteria, these pegmatites are classified into three main categories: barren, intermediate and rare-element pegmatites, with each type including various subtypes. Phosphates are present in many pegmatites that usually occur as fine-grained accessory minerals. The most complex association of such minerals includes numerous Fe–Mn phosphates that occur in intermediate pegmatites. Al-phosphates are characteristic of Li-rich pegmatites. Electron microprobe analyses of representative phosphates reflect compositional differences depending on the pegmatite type. The Fe/(Fe+Mn) ratio of phosphates tends to decrease as the evolution degree of the pegmatites increases.  相似文献   

5.
Published experimental data including garnet and clinopyroxene as run products were used to develop a new formulation of the garnet–clinopyroxene geothermometer based on 333 garnet–clinopyroxene pairs. Only experiments with graphite capsules were selected because of difficulty in estimating the Fe3+ content of clinopyroxene. For the calibration, a published subregular‐solution model was adopted to express the non‐ideality of garnet. The magnitude of the Fe–Mg excess interaction parameter for clinopyroxene (WFeMgCpx), and differences in enthalpy and entropy of the Fe–Mg exchange reaction were regressed from the accumulated experimental data set. As a result, a markedly negative value was obtained for the Fe–Mg excess interaction parameter of clinopyroxene (WFeMgCpx = ? 3843 J mol?1). The pressure correction is simply treated as linear, and the difference in volume of the Fe–Mg exchange reaction was calculated from a published thermodynamic data set and fixed to be ?120.72 (J kbar?1 mol?1). The regressed and obtained thermometer formulation is as follows: where T = temperature, P = pressure (kbar), A = 0.5 Xgrs (Xprp ? Xalm ? Xsps), B = 0.5 Xgrs (Xprp ? Xalm + Xsps), C = 0.5 (Xgrs + Xsps) (Xprp ? Xalm), Xprp = Mg/(Fe2+ + Mn + Mg + Ca)Grt, Xalm = Fe/(Fe2+ + Mn + Mg + Ca)Grt, Xsps = Mn/(Fe2+ + Mn + Mg + Ca)Grt, Xgrs = Ca/(Fe2+ + Mn + Mg + Ca)Grt, XMgCpx = Mg/(Al + Fetotal + Mg)Cpx, XFeCpx = Fe2+/(Al + Fetotal + Mg)Cpx, KD = (Fe2+/Mg)Grt/(Fe2+/Mg)Cpx, Grt = garnet, Cpx = clinopyroxene. A test of this new formulation to the accumulated data gave results that are concordant with the experimental temperatures over the whole range of the experimental temperatures (800–1820 °C), with a standard deviation (1 sigma) of 74 °C. Previous formulations of the thermometer are inconsistent with the accumulated data set; they underestimate temperatures by about 100 °C at >1300 °C and overestimate by 100–200 °C at <1300 °C. In addition, they tend to overestimate temperatures for high‐Ca garnet (Xgrs ≈ 0.30–0.50). This new formulation has been tested against previous formulations of the thermometer by application to natural eclogites. This gave temperatures some 20–100 °C lower than previous formulations.  相似文献   

6.
Summary Titanian ferrocolumbite is a rare accessory mineral in the spodumene-bearing pegmatites at Weinebene, Carinthia, Austria. It contains abundant exsolved niobian rutile and scarce inclusions of cassiterite that may be primary. The titanian ferrocolumbite is relatively homogeneous with Mn/(Mn + Fe) 0.24–0.33, Ta/(Ta + Nb) 0.09–0.13 (atomic ratios) and 0.47–0.88 Ti per 12 cations (2.7–5.0 wt.% TiO2). Natural specimens are considerably disordered but become more ordered on heating. Niobian rutile has Mn/(Mn + Fe) 0.00–0.04 and Ta/(Ta + Nb) 0.26–0.38; it concentrates Fe, Ta, Ti and Sn relative to the Mn- and Nb-enriched ferrocolumbite. The overall scarcity of Nb, Ta-oxide minerals in the spodumene-bearing pegmatites of southern Ostalpen conforms to their general features ranking them with the albite-spodumene type of rare-element pegmatites.With 4 Figures  相似文献   

7.
Summary Field, mineralogical, and chemical determinations of biotite from late-tectonic rare-element (U, Th, Mo, Nb, REE) Grenville pegmatites are used to characterize and evaluate their petrogenesis in part of the southwestern Grenville Province. These pegmatites occur within middle to upper amphibolite facies rocks along and adjacent to shear zones and have hybridized margins because of interaction with their host rocks. Endo- and exomorphic biotite forms by the mechanical incorporation or hydrothermal replacement of pre-existing biotite, hornblende, Ca pyroxene and/or feldspar; accompanied by chemical re-equilibration, an increase in grain size, and inherit some of the chemical characteristics of the pegmatite. In general, the Fe/(Fe + Mg) ratio ranges between 0.22 and 0.86. The most highly fractionated biotites have high Fe/(Fe + Mg), Al, Mn, Rb, Nb, and Zn and low Ba. The chemical compositions of biotite from unzoned, partially-zoned, and zoned pegmatites indicate a trend of increasing chemical fractionation based on LIL enrichment.Overlap in calculated log (3.2 to 4.7) and log (1.3 to 2.8) for biotite (@ 600°C) among the different pegmatites is extensive. Commonly, magnetite and microcline coexist with biotites having an Fe/(Fe + Mg) between 0.54 to 0.65. Volatile enrichment and vapor-phase saturation are probably responsible for the development of zonation in the pegmatites. The diffusive loss of H2 at or near H2O vapor saturation at high H2O/Fe2+ may be responsible for the oxidized nature of some pegmatites.Rare-element enrichment due to pegmatite fractionation combined with partitioning of rare-elements from the pegmatite melt into the volatile phase and subsequent interaction with the host rocks is key to the formation of these rare-element mineral deposits.
Petrogenese und geochemische Zusammensetzung von Biotiten in seltenen Element-führenden granitischen Pegmatiten der südwestlichen Grenville Provinz, Kanada
Zusammenfassung Die Ergebnisse von Geländearbeiten, sowie von mineralogischen und geochemischen Untersuchungen an Biotit aus spättektonischen seltenen Element-Pegmatiten (U, Th, Mo, Nb, REE) von Grenville-Alter bilden die Basis einer Diskussion ihrer Petrogenese in der südwestlichen Grenville Provinz. Diese Pegmatite kommen in Gesteinen der mittleren bis oberen Amphibolit-Fazies längs und in der Nähe von Shearzonen vor und haben hybridisierte Ränder, die auf Interaktion mit ihren Wirtsgesteinen zurückgehen. Endo- und exomorphe Biotite sind durch mechanische Einschließung oder durch hydrathermale Verdrängung von Biotiten, Hornblenden, Kalziumpyroxenen und/oder Feldspäten gebildet worden. Dies wird durch chemische Reequilibrierung, eine Zunahme der Korngröße und durch Übernahme einiger chemischer Charakteristika der Pegmatite begleitet. Im allgemeinen schwanken die Fe/(Fe + Mg) Verhältnisse von 0.22 bis 0.68, die am stärksten fraktionierten Biotite haben hohe Fe/(Fe + Mg), Al, Mn, Rb, Nb und Zn Gehalte und niedrige Ba Gehalte. Die chemische Zusammensetzung von Biotit aus nicht zonierten, teilweise zonierten und zonierten Pegmatiten zeigt einen Trend mit zunehmend chemischer Fraktionierung, die auf einer Anreicherung von LIL-Elementen basiert.Beträchtliche überschneidungen in den berechneten log (3.2 bis 4.7) und log (1.3 bis 2.8) für Biotit (600°C) von verschiedenen Pegmatiten sind zu erkennen. Im allgemeinen koexistiert Magnetit und Mikroklin mit Biotiten von Fe/ (Fe + Mg) Verhältnissen zwischen 0.54 und 0.65. Anreicherung von volatilen Phasen und eine Sättigung der Dampfphase sind wahrscheinlich für die Entwicklung der Zonierung der Pegmatite verantwortlich. Der Verlust von H2 durch Diffusion im Bereich der H2O Dampfsättigung bei hohen H2O/Fe2+ Werten dürfte für die oxidierte Natur einiger Pegmatite verantwortlich sein.Wichtigster Faktor für die Bildung dieser Lagerstätten seltener Elemente ist die Anreicherung von seltenen Elementen durch Pegmatit-Fraktionierung, wobei diese von der Pegmatit-Schmelze in die volatile Phase gehen, und die anschließende Interaktion mit den Nebengesteinen.


With 9 Figures  相似文献   

8.
稀有金属矿物记录了花岗伟晶岩成岩成矿的重要信息。喜马拉雅是全球著名的淡色花岗岩带,库曲岩体位于喜马拉雅东段的特提斯喜马拉雅岩系中。本文调查了库曲岩体的二云母花岗岩、白云母花岗岩、电气石花岗岩和花岗伟晶岩,其中,花岗伟晶岩涉及花岗岩的伟晶岩相和独立伟晶岩脉。库曲岩体产出的稀有金属矿物包括锂辉石、锂绿泥石、绿柱石、铌铁矿-钽铁矿、钇铀钽烧绿石和细晶石,它们主要赋存于似文象伟晶岩、石英-钠长石-白云母伟晶岩、块体长石-钠质细晶岩、块体长石-电气石钠质细晶岩、锂辉石-块体长石-细晶岩、白云母花岗岩的伟晶岩相以及电气石花岗岩内。显微镜观察、电子探针和LA-ICP-MS测试结果显示锂辉石具有四种产状,包括粗粒锂辉石自形-半自形晶、细粒锂辉石-石英镶嵌晶、中细粒锂辉石-钾长石-钠长石-云母镶嵌晶以及发育锂绿泥石的粗粒锂辉石,揭示了其形成时复杂的熔流体动荡结晶环境。绿柱石背散射电子图像(BSE)下呈均一结构和不均一结构(蚀变边、不规则分带和补丁分带),元素替代机制包括通道-八面体替代、通道-四面体替代以及通道中碱金属阳离子间的置换。铌铁矿族矿物包括原生、蚀变边和不规则分带结构,部分被钇铀钽烧绿石和细晶石交代。与原生铌铁矿相比,蚀变边和不规则分带铌铁矿族矿物总体上富钽贫锰,显示了结晶分异、过冷却引起的过饱和以及流体作用。根据稀有金属矿物揭示的成因信息,独立伟晶岩脉(似文象伟晶岩)、白云母花岗岩的伟晶岩相和电气石花岗岩在岩浆分异程度、经历的演化过程、以及流体活动方面存在差异,很可能是不同期次岩浆活动的产物。库曲岩体绿柱石的Rb和Zn含量、以及铌铁矿族矿物的Sc2O3、SiO2和PbO含量,与已有指示标志存在相关性,作为潜在指示标志仍需开展更多的研究工作。综合含锂辉石伟晶岩的产出、岩浆分异演化程度、多期花岗质岩浆活动、复杂的流体作用以及所属锂丰度高值区等因素,库曲岩体是喜马拉雅东段找锂的有利地段。  相似文献   

9.
Summary Tourmaline is an ubiquitous constituent in the Pinilla de Fermoselle rare-element pegmatite (Zamora, Spain), as well as in barren pegmatitic and quartz–tourmaline veins inside the associated leucogranite. The rare-element pegmatite shows internal zoning, evolving from a barren facies, in the lower border zone, in contact with the leucogranite, to a Li-rich facies in the upper border zone, close to the host-rocks.Tourmalines from the veins within the leucogranite have highest Mg contents, and belong to the schorl–dravite series. The tourmalines from the rare-element pegmatite mostly belong to the schorl–elbaite series, with chemical compositions within the range of the end-members, whereas the tourmalines associated with the most evolved zone in the pegmatite belong to the elbaite–rossmanite series. The broad compositional range shown by the tourmalines correlates quite well with the pegmatite zoning. The most plausible substitution mechanism for the chemical evolution of tourmalines during crystallization seems to be Mg–1Fe2+1, [X]–1YAl–1XNa–1YFe2+1, for the foitite–schorl series; YFe2+–3YAl1.5YLi1.5, for the schorl–elbaite vector; XNa–1YLi–0.5[X]1YAl0.5, for the elbaite–rossmanite series; and, (OH)1F1 for all the tourmalines except the pink elbaites. This chemical variation in tourmaline is consistent with a crystal fractionation model for the evolution of the Pinilla pegmatite.  相似文献   

10.
Garnet-biotite gneisses, some of which contain sillimanite or hornblende, are widespread within the Otter Lake terrain, a portion of the Grenville Province of the Canadian Shield. The metamorphic grade is upper amphibolite to, locally, lower granulite facies. The atomic ratio Fe2+/(Fe2++ Fe3+) in biotite ranges from 0.79 to 0.89 (ferrous iron determinations in 10 highly pure separates), with a mean of 0.86. Mg and Fe2+ atoms occupy 67–78% of the octahedral sites, the remainder are occupied by Fe3+, Ti, and Al, and some are vacant. Mg/(Mg + Fe2+), denoted X, in the analysed samples ranges from 0.32 to 0.65. Garnet contains 1–24% grossular, 1–12% spessartine and X ranges from 0.07 to 0.34. Compositional variation in biotite and garnet is examined in relation to three mineral equilibria: (I) biotite + sillimanite + quartz = garnet + K-feldspar + H2O; (II) pyrope + annite = almandine + phlogopite; (III) anorthite = grossular + sillimanite + quartz. Measurements of X (biotite) and X (garnet) are used to construct an illustrative model for equilibrium (I) which relates the observed variation in X to a temperature range of 70°C or a range in H2O activity of 0.6; the latter interpretation is preferred. In sillimanite-free gneisses, the distribution of Mg and Fe2+ between garnet (low in Ca and Mn) and biotite is adequately described by a distribution coefficient (KD) of 4.1 (equilibrium II). The observed increase in the distribution coefficient with increasing Ca in garnet is ln KD= 1.3 + 2.5 × 10?2 [Ca] where [Ca] = 100 Ca/(Mg + Fe2++ Mn + Ca). The distribution coefficient is apparently unaffected by the presence of up to 12% spessartine in garnet. In several specimens of garnet-sillimanite-plagioclase gneiss, the Ca contents of garnet and of plagioclase increase in unison, as required by equilibrium (III). The mean pressure calculated from these data (n= 17) is 5.9 kbar, and the 95% confidence limits are ±0.5 kbar.  相似文献   

11.
The zonal structure of prograde garnet in pelitic schists from the medium-grade garnet zone and the higher-grade albite-biotite zone was examined to investigate the evolution of prograde PT paths of the Sanbagawa metamorphism. The garnet studied shows a bell-shaped chemical zoning of the spessartine component, which decreases in abundance from the core towards the rim. Almandine and pyrope contents and XMg [=Mg/(Mg+Fe2+)] increase monotonously outwards. The general scheme of the zonal structure for grossular content [XGrs=Ca/(Fe2++Mn+Mg+Ca)] can be summarized as: (1) XGrs increases outwards (inner segment) and reaches a maximum at an intermediate position between the crystal core and the rim, then decreases towards the outermost rim (outer segment) (2) the inner segment of garnet in the garnet zone samples tends to have a higher XGrs/XSps values for a given XSps than those in the albite–biotite zone samples (3) average XSps at the maximum XGrs position in the albite–biotite zone samples ranges from 0.02 to 0.12 and is lower than that in the garnet zone samples (0.13–0.32) (4) the maximum XGrs in the albite–biotite zone samples (0.34–0.39 on average) tends to be higher than that in the garnet zone samples (0.26–0.36), and (5) differences of XGrs between the maximum and rim in the albite–biotite zone samples are between 0.10 and 0.14 and higher than those in the garnet zone samples (< 0.11). These facts imply that albite–biotite zone materials (a) were recrystallized under lower dP/dT conditions at an early stage of the prograde metamorphism (b) began their exhumation under higher PT conditions and (c) have been continuously heated during exhumation for a longer duration than the garnet zone materials. The systematic changes of prograde PT paths can be interpreted as documenting the evolution of the Sanbagawa subduction zone.  相似文献   

12.
This study is Part II of a series that documents the development of a suite of calibration reference materials for in situ SIMS analysis of stable isotope ratios in Ca‐Mg‐Fe carbonates. Part I explored the effects of Fe2+ substitution on SIMS δ18O bias measured from the dolomite–ankerite solid solution series [CaMg(CO3)2–CaFe(CO3)2], whereas this complementary work explores the compositional dependence of SIMS δ13C bias (calibrated range: Fe# = 0.004–0.789, where Fe# = molar Fe/(Mg+Fe)). Under routine operating conditions for carbonate δ13C analysis at WiscSIMS (CAMECA IMS 1280), the magnitude of instrumental bias increased exponentially by 2.5–5.5‰ (session‐specific) with increasing Fe‐content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mole % Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the matrix effect) was expressed using the Hill equation, yielding calibration residual values ≤ 0.3‰ relative to CRM NBS‐19 for eleven carbonate reference materials (6‐μm‐diameter spot size measurements). Based on the spot‐to‐spot repeatability of a drift monitor material that ‘bracketed’ each set of ten sample‐spot analyses, the analytical precision was ± 0.6–1.2‰ (2s, standard deviations). The analytical uncertainty for individual sample analyses was approximated by combining the precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of ± 1.0–1.5‰ (2s).  相似文献   

13.
川西甲基卡二云母花岗岩和伟晶岩内发育大量原生熔体包裹体和富晶体流体包裹体。为了查明甲基卡成矿熔体、流体性质与演化特征,运用激光拉曼光谱和扫描电镜鉴定了甲基卡花岗伟晶岩型锂矿床中二云母花岗岩及伟晶岩脉不同结构带内的原生熔体、流体包裹体的固相物质。分析结果表明,甲基卡二云母花岗岩石英内熔体包裹体的矿物组合为磷灰石+白云母、白云母+钠长石、白云母+石墨;伟晶岩绿柱石内富晶体流体包裹体的矿物组合主要为刚玉、富铝铁硅酸盐+刚玉+锂辉石、锂辉石+石英+锂绿泥石;伟晶岩锂辉石内富晶体流体包裹体的矿物组合主要为磷灰石、锡石、磁铁矿、石英+钠长石+锂绿泥石、萤石、富钙镁硅酸盐+富铁铝硅酸盐+富铁硅酸盐+石英;花岗岩浆熔体与伟晶岩浆熔体(流体)具有一定的差异,成矿熔体、流体成分总体呈现出碱质元素(Na、Si、Al)、挥发分(F、P、CO_2)含量增高及基性元素(Fe、Mg、Ca)降低的特征;包裹体中子矿物与主矿物的化学成分具有一定的差别,揭示出伟晶岩熔体(流体)存在局部岩浆分异作用,具不混溶性及非均匀性。因此认为,伟晶岩熔浆(流体)为岩浆分异与岩浆不混溶共同作用的产物,挥发分含量的增高(F、P、CO_2)使伟晶岩能够与稀有金属组成各类络合物或化合物,这对于稀有金属成矿起到了至关重要的作用。  相似文献   

14.
东秦岭地区是我国重要的花岗伟晶岩区及稀有金属成矿区.电气石在东秦岭各类花岗伟晶岩中广泛发育,通常在无矿化伟晶岩、铍矿化及锂矿化伟晶岩中呈黑色-深蓝色.本文旨在通过各类伟晶岩中电气石的对比研究揭示电气石地球化学特征对东秦岭伟晶岩矿化类型的指示作用.本文所研究电气石为作为东秦岭各类伟晶岩贯通矿物的黑电气石系列.在双峰村、碾...  相似文献   

15.
Summary Elevated P contents of up to 0.086 apfu (1.21 wt.% P2O5) were found in garnet from leucocratic granitic rocks (orthogneisses, granites, barren to highly evolved pegmatites) in the Moldanubicum and Silesicum, Czech Republic, and in complex granitic pegmatites from southern California, USA, and Australia. Minor concentrations (0.15–0.55 wt.% P2O5) appear ubiquitous in garnet from leucocratic granitic rocks of different origins and degrees of fractionation. Concentrations of P are not related to Mn/(Mn + Fe) that vary from 0.12–0.86 and to textural types of garnet (i.e., isolated anhedral to euhedral grains and nodules, graphic and random garnet–quartz aggregates, subsolidus veins of fine-grained garnet). Garnet compositions exhibit negative correlations for P/Si and P/R2+ where R2+ = Fe + Mn + Mg + Ca, while Al is constant at ∼2.05 apfu. Concentrations of Na are largely below 0.02 apfu but positively correlate with P. The main substitution may involve A-site vacancy and/or the presence of some light element(s) in the crystal structure. The substitution □P2 R2+ −1Si−2 and/or alluaudite-type Na□P3 R2+ −1Si−3 seem the most likely P-incorporating mechanisms. The partitioning of P among garnet and associated minerals in granitic systems remains unclear; however, it directly affects the distribution of Y and REEs.  相似文献   

16.
Summary Four types of pegmatites comprise the zoned pegmatite field in the eastern sector of the Albera Massif. Type I is represented by barren pegmatites with graphic textures; type II comprises transitional varieties with Li-Fe-Mn phosphates, Be (chrysoberyl) and scarce Nb-Ta and U oxide minerals; type III consists of pegmatites with significant zones of replacement containing Li-Fe-Mn phosphates, beryl and more abundant Nb-Ta oxide minerals; and type IV, muscovite-quartz-albite pegmatites are highly mineralized with Be, Nb-Ta and HREE. REE mineralization is strongly related to abundance of graphite in the late pegmatite units and in the host-rock. The individual pegmatite types are distributed within four subparallel zones concentric around anatectic muscovite-biotite leucogranites, with type I within the granites or close to the contact, and type IV pegmatites in the outermost areas. The zoning from type I to type IV could relate to fractionation processes which generated the pegmatites and is characterized by an enrichment of Mn, Ta, Na, Li, P, Be and REE. According to the pegmatite distribution and their fractionation trends, we propose an origin by differentiation of a granitic melt.
Résumé On a établi quatre types de pegmatites dans le champ pegmatitique zoné du secteur est du Massif des Albères (Pyrénées Orientales, France). Celles de type I sont des pegmatites non minéralisées avec des textures graphiques, celles de type II sont des variétés intermediaires avec des phosphates à Li-Fe-Mn, Be (chrysobéryl) et des rares oxides à Nb-Ta et U; celles de type Ill sont des pegmatites avec des zones de réplacement bien dévéloppées et qui contiennent des phosphates à Li-Fe-Mn, du béryl et des oxides à Nb-Ta plus abondants; celles de type IV sont des pegmatites bien minéralisées à Be, Nb-Ta et des T.R. La minéralisation à T.R. est liée à des phénomènes de graphitisation répandus dans les unités tardives de la pegmatite et dans l'encaissant. La distribution de chaque type de pegmatite correspond à quatre zones à peu près parallèles et concentriques autour des granites anatectiques à muscovite-biotite, avec le type I dans les granites ou prochain au contact, et les pegmatites à type IV dans la bande plus externe. La zonation serait due à des processus de fractionnement qui auraient généré les pegmatites et qui sont caracterisés par un enrichissement en Mn, Ta, Na, Li, P, Be et T.R. dès les pegmatites de type I vers celles de type IV. On propose un origine par différentiation des granites en vue de la distribution des pegmatites.


With 5 Figures  相似文献   

17.
We document the development of a suite of carbonate mineral reference materials for calibrating SIMS determinations of δ18O in samples with compositions along the dolomite–ankerite solid solution series [CaMg(CO3)2–CaFe(CO3)2]. Under routine operating conditions for the analysis of carbonates for δ18O with a CAMECA IMS 1280 instrument (at WiscSIMS, University of Wisconsin‐Madison), the magnitude of instrumental bias along the dolomite–ankerite series decreased exponentially by ~ 10‰ with increasing Fe content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mol% Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the sample matrix effect) was calibrated using the Hill equation, which relates bias to the Fe# of dolomite–ankerite [i.e., molar Fe/(Mg+Fe)] for thirteen reference materials (Fe# = 0.004–0.789); for calibrations employing either 10 or 3 μm diameter spot size measurements, this yielded residual values ≤ 0.3–0.4‰ relative to CRM NBS 19 for most reference materials in the suite. Analytical precision was ± 0.3‰ (2s, standard deviations) for 10‐μm spots and ± 0.7‰ (2s) for 3‐μm spots, based on the spot‐to‐spot repeatability of a drift monitor material that ‘bracketed’ each set of ten sample‐spot analyses. Analytical uncertainty for individual sample analyses was approximated by a combination of precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of ± 0.5‰ (2s) for 10‐μm spots and ± 1‰ (2s) for 3‐μm spots.  相似文献   

18.
Multiple regression analysis on an extended dataset has been performed to refine the relationship between temperature, pressure, composition and the Fe–Mg distribution between garnet and clinopyroxene. In addition to a significant dependence between the distribution coefficient KD and X GrtCa and X GrtMg#, as shown by the experimental data, the effect of X GrtMn has also been incorporated using data from natural Mn‐rich garnet–clinopyroxene pairs. Multiple regression of data (n=360) covering a large span in pressure, temperature and composition from 27 experimental datasets, combined with 49 natural high‐Mn granulites from Ruby Range, Montana, USA, and Karnataka, India, yields the P–T –compositional relationship (r2=0.98): where KD=(Fe2+/Mg)Grt/(Fe2+/Mg)Cpx, X GrtCa=Ca/(Ca+Mn+Fe2++Mg) in garnet, X GrtMn= Mn/(Ca+Mn+Fe2++Mg) in garnet, and X GrtMg#=Mg/(Mg+Fe2+) in garnet. The Fe2+–Mg equilibrium between garnet and clinopyroxene does not seem to be affected by variations in the sodic content of the co‐existing clinopyroxene in the range X CpxNa=0–0.51. Comparisons between the new and former calibrations of the garnet–clinopyroxene Fe2+–Mg geothermometer clearly demonstrate how the various parameters in each case affect the calculated temperatures. Application of the new expression gives reasonable results for natural garnet–clinopyroxene pairs from various rock types and settings, and should be preferred to previous formulations. Using the new calibration to the self‐consistent dataset of Pattison & Newton (Contributions to Mineralogy and Petrology, 1989, 101, 87–103) suggests a systematic deviation with regard to both temperature and composition between their dataset and the datasets used in the present calibration.  相似文献   

19.
Summary The formation of cummingtonite in two Ca and Al-poor and Mg-rich amphibolites from the Austroalpine Schneeberg complex occurred at a maximum temperature of about 550°C (5 kb). This is a result of the amphibolite facies Alpine overprint in this part of the Eastern Alps.Textural and chemical relations suggest (Mg–1Si–1Al2)-continuous reactions in the bivariant CMASH-assemblageCam-Cum-Chl * followed by the discontinuous reactionCam+Chl+Qu=Cum+Plg+H2O to be responsible for the formation of cummingtonite in these samples.The Mg–Fe distribution coefficient with values of 0.6–0.7 is similar to cummingtonite-Ca-amphibole pairs from amphibolites with oligoclase+quartz reported in the literature. The Mg/(Mg+Fe) ratio of the calcic amphiboles is lower (0.539–0.555) than the coexisting cummingtonites (0.648–0.662).
Koexistierende Cummingtonite und Hornblenden in Amphiboliten des Schneeberger Zuges, Tirol, Österreich
Zusammenfassung In zwei Ca- und Al-armen Amphiboliten des nördlichen Schneebergerzuges (Rotmoostal) bildete sich Cummingtonit bei Maximaltemperaturen von 550°C (5 kb) bei der Altalpidschen Metamorphose.Texturelle und chemische Beziehungen lassen vermuten, daß sich Cummingtonite sowohl nach kontinuierlichen Reaktionen (in bezug auf den Tschermak-Vektor Mg–1Si–1Al2) gebildet hat, als auch aus Hornblende und Chlorit nach der diskontinuierlichen ACF-ReaktionCam+Chl+Qu=Cum+Plg+H2O hervorgegangen ist.Der Mg–Fe-Verteilungskoeffizient zwischen Hornblende und Cummingtonit entspricht den aus der Literatur bekannten Werten. Er beträgt zwischen 0.6–0.7 für die beginnende Amphibolitfazies. Die Mg/(Mg+Fe)-Verhältnisse sind höher in Cummingtonit (0.648–0.662) als in der koexistierenden Hornblende (0.539–0.555).


With 4 Figures  相似文献   

20.
A Ca- and Mn-poor clino-amphibole with Mg/Mg+Fetot+Mn (atomic ratio)=0.81 is described. The structural formula is $$Na_{0.09} (Ca_{0.19} Mg_{5.45} Fe_{1.23}^{2 + } Mn_{0.04} Fe_{0.00}^{3 + } Ti_{0.01} Al_{0.07} )_{6.99} [(Si_{7.83} Al_{0.17} )_{8.00} O_{22} /(OH)_2 ].$$ The unit-cell constants area 0=9.49 Å,b 0=18.00 Å,c 0=5.30 Å, β=102.0°,V 0=886 Å3, the refractive indices αNa=1.621, βNa=1.632, and γNa=1.643. These values, when plotted against the Mg/Mg+Fe ratio, fit the extrapolations towards Mg7[Si8O22/(OH)2] from recently published determinative curves for the cummingtonite series. The clino-amphibole, or part of it, has space groupP21/m rather thanC2/m. The most magnesian cummingtonites reported thus far have Mg/Mg+Fe+Mn ratios around 0.7, but recently more magnesian Ca-poorP21/m clino-amphiboles have been reported. Although Ca and Mn have been claimed to stabilize cummingtonite as against anthophyllite, most magnesian cummingtonites appear to have <0.24 Ca, and <0.1 Mn per formula unit. The nomenclature of the cummingtonite series is discussed. Retaining the subdivision of the cummingtonite series at Mg/Mg+Fe=0.5, the author proposes to reviveTilley’s (1939) name magnesiocummingtonite for members with Mg/Mg+Fe >0.5. Grunerite is reserved for members with Mg/Mg+Fe <0.5. The space group,C2/m orP21/m, may be indicated with a suffix, if known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号