首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 243 毫秒
1.
双孔盾构隧道近接施工离心模型试验研究   总被引:2,自引:0,他引:2  
凌昊  仇文革  孙兵  余锋 《岩土力学》2010,31(9):2849-2853
通过室内离心模型试验模拟双孔盾构隧道近接施工,研究了衬砌结构横向内力的量值、分布规律以及随盾构推进距离和两隧道相对位置的变化规律。结果表明,衬砌结构拱顶和拱底内侧受拉,左右拱腰外侧受拉,拱底出现最大弯矩;整个结构均受压,拱顶和拱底处轴力较小,左右拱腰轴力较大;既有隧道施工完成后,结构内力基本呈对称分布,且随着新建隧道的施工,两隧道结构内力将随其相对位置的变化而变化;新建隧道施工对既有隧道结构内力影响明显,设计施工时应采取相应的加强措施。  相似文献   

2.
围岩弹性抗力对隧道结构受力的影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
运用荷载结构模型及有限元分析手段,以新建200km时速城际铁路隧道衬砌为研究对象,分析了围岩弹性抗力对二衬结构受力的影响。随着围岩弹性抗力的增大,拱顶弯矩及拱肩弯矩绝对值、拱顶竖向位移变小,而拱顶轴力及安全系数变大。说明,围岩越坚硬,衬砌结构受力越有利。随着二衬厚度的增大,拱顶弯矩及拱肩弯矩绝对值变大,而拱顶轴力、拱顶竖向位移及安全系数变小。随着混凝土强度等级的提高,拱顶弯矩、拱肩弯矩及安全系数变大,拱顶轴力和拱顶竖向位移变小,但这些量值的变化幅度较小,说明混凝土弹性模量对二衬受力影响很小。  相似文献   

3.
为分析交错新建隧道施工对既有隧道的影响,采用公路隧道结构与围岩综合试验系统对交错隧道进行三维物理模型试验。测试的内容包括新建隧道开挖引起既有隧道围岩内部压应力、围岩内部位移及支护结构内力的变化规律。试验结果表明,既有隧道拱顶径向压应力和拱腰切向压应力具有增加趋势,拱顶切向压应力和拱腰径向压应力具有减小趋势;拱顶围岩内部位移表现为压缩变形,拱腰围岩内部位移为拉伸变形;既有隧道支护结构的轴力和弯矩全为增加,右拱腰的弯矩受到的影响最大;新建隧道施工对既有隧道L8截面的影响较小,对L1和L4截面的影响非常明显,当间距小于L8截面情况时应采取加固措施。  相似文献   

4.
以兰渝铁路新作坊隧道洞口明挖段不等跨连拱结构为背景,采用室内模型试验的方法,对不等跨连拱铁路隧道围岩压力分布及受力特征进行研究。试验结果表明:隧道水平侧压力均小于竖向围岩压力,拱顶处侧压力小于墙脚处侧压力,小洞侧侧压力系数平均为0.55,大洞侧侧压力系数平均为0.65;中隔墙顶部围岩压力均大于拱顶处围岩压力,且大洞拱顶围岩压力约为小洞的1.2倍;隧道结构总体为小偏心压弯构件,大洞所承受的轴力总体比小洞承受的轴力大20%-30%;隧道先后在大小洞靠近中隔墙的拱腰及仰拱处破坏,最终发生整体失稳;靠近中隔墙的大小洞拱腰及仰拱是设计施工时应重点关注的部位;最终获得不等跨连拱铁路隧道的围岩压力分布模式,研究结果可以直接指导新作坊隧道结构的设计与施工,有利于完善不等跨连拱隧道设计施工理念。  相似文献   

5.
张俊儒  孙克国  卢锋  郑宗溪  孙其清 《岩土力学》2015,36(11):3077-3084
以兰渝铁路新作坊隧道洞口明挖段不等跨连拱结构为背景,采用室内模型试验的方法,对不等跨连拱铁路隧道围岩压力分布及受力特征进行研究。试验结果表明:隧道水平侧压力均小于竖向围岩压力,拱顶处侧压力小于墙脚处侧压力,小洞侧侧压力系数平均为0.55,大洞侧侧压力系数平均为0.65;中隔墙顶部围岩压力均大于拱顶处围岩压力,且大洞拱顶围岩压力约为小洞的1.2倍;隧道结构总体为小偏心压弯构件,大洞所承受的轴力总体比小洞承受的轴力大20%~30%;隧道先后在大小洞靠近中隔墙的拱腰及仰拱处破坏,最终发生整体失稳;靠近中隔墙的大小洞拱腰及仰拱是设计施工时应重点关注的部位;最终获得不等跨连拱铁路隧道的围岩压力分布模式,研究结果可以直接指导新作坊隧道结构的设计与施工,有利于完善不等跨连拱隧道设计施工理念。  相似文献   

6.
岩溶区隧道衬砌背后空洞与高透水压力的共同作用,改变了衬砌的受力状态,导致结构原本良好的受力状况恶化,进而可能造成衬砌的开裂破损。采用FLAC3D软件研究不同空洞位置对应力场分布、渗流场分布、二次衬砌内力的影响以及在高透水压力下拱顶空洞大小对二衬内力的影响规律。结果表明:竖直应力场为主应力场时空洞周边会出现应力增大区和应力减小区;空洞会使3倍空洞直径范围内外水压力明显折减;无外水压力时空洞对二次衬砌弯矩的影响远大于轴力;无论空洞存在与否,存在何位置,各测点内力均随水头高度的升高呈现线性变化,拱底与拱脚内力大小及变化速率都远大于其他测点,且空洞不同位置下内力随水压的变化速率有很大区别;边墙空洞使衬砌结构处于偏压状态,且随水头高度的升高偏压效应更加明显;拱部弯矩随拱顶空洞大小线性特征明显。  相似文献   

7.
对于围岩中存在管道型溶腔的岩溶隧道而言,受地表强降雨及地下水的影响,管道型溶腔内极易积聚高水压力,进而引发衬砌开裂、渗漏水及涌水病害。为了探明管道型溶腔中高水压力对衬砌结构的影响,开展了富水管道型岩溶隧道衬砌结构力学响应模型试验,对不同溶腔位置及不同水头高度影响下的衬砌结构内力特征进行了研究。基于此,建立扩展工况的数值计算模型,进一步探究了不同溶腔直径、溶腔位置及溶腔水头高度对衬砌结构内力的影响。结果表明:当隧道周围存在管道型溶腔时,与溶腔接触位置的衬砌内侧承受较大的正弯矩,为衬砌结构的最不利受力位置;随着溶腔直径和溶腔内水头高度的增加,衬砌内力显著增大;溶腔所在位置影响着衬砌内力的分布,当溶腔位于隧道拱顶时,衬砌结构的抗水压能力最小。研究结果可为管道型岩溶隧道的结构设计及安全施工提供借鉴。  相似文献   

8.
鉴于隧道防排水型式在城市矿山法隧道中的重要性,本文以深圳水库下游东部过境高速公路连接工程为背景,在分析现有成果的基础上,基于流-固耦合作用机理,采用FLAC3D有限差分软件对城市矿山法隧道在不同防排水型式下的渗流力学特征进行研究,研究结果表明:城市矿山法隧道在防水板全包-堵水型中,衬砌背后孔隙水压同静水压力基本保持一致;在防水板半包-排水型和防水板全包-排水型中,孔隙水压力以及二衬最大拉应力和最大压应力均产生不同程度的减少。对于不同防排水型式,最大孔隙水压均位于拱底处,最小主应力均位于拱脚处,最大主应力均位于拱底处,水平方向位移最大值位于拱腰处,而竖直方向位移最大值位于拱顶或拱底处。  相似文献   

9.
《岩土力学》2017,(12):3688-3697
运用不同的有限元分析软件(RFPA~(2D)、ABAQUS)模拟研究隧道周边裂纹对直墙拱形隧道围岩稳定性的影响。裂纹分布在隧道拱底、边墙、拱肩、拱顶等部位,将两种数值模拟方法进行对比分析,研究隧道周边裂纹的起裂、扩展机制及隧道围岩在围压载荷作用下的破坏形式。为了验证数值模拟结果,采用水泥砂浆制作隧道模型进行模型试验并与数值模拟结果进行对比分析,其数值分析与模型试验结果较为一致。结果表明,隧道墙脚处的裂纹是隧道围岩破坏的较弱位置;隧道拱顶圆弧位置处的裂纹与隧道拱顶圆弧圆心成45°夹角时,隧道模型的抗压强度最低,稳定性最差;隧道在围压作用下,破坏形式主要是拱底、拱顶的拉伸破坏和边墙、裂纹尖端的压剪破坏。  相似文献   

10.
岩溶隧道通常面临季节性溶槽水位波动带来的水害风险,文章结合工程案例,通过数值模拟,量化分析不同水位和不同位置溶槽蓄水对隧道衬砌受力影响,以揭示隧道水害风险的发生机制和演化特征,主要结论:(1)溶槽在季节性强降雨时发生水位波动,隧道外水压力变化频繁,导致隧道衬砌内力变化显著;水位升高时,结构受力恶化,安全性大幅削减,其中拱顶、边墙仍以小偏心受压模式承载,而隧底部位承载模式由小偏心受压逐步发展为大偏心受压;高水位时衬砌结构存在开裂、破损的风险;(2)边墙部位溶槽蓄水对隧道造成偏压水荷载,边墙安全系数最高下降1.1;地下水位上升,偏压水荷载逐渐演化为均布水荷载,结构受力影响差异性逐渐减小;(3)季节性强降雨来袭,加强泄水降压是解决水头上升、水压过大致使衬砌破坏的关键,并重点关注边墙、隧底衬砌结构安全。  相似文献   

11.
匡亮  仇文革 《岩土力学》2006,27(Z1):524-528
详细地介绍了曲墙式、直墙式和圆形断面隧道衬砌在约束条件、隔热保温层及含水状况等因素变化情况下的相似材料冻胀力室内模型试验,通过分析试验得出不同衬砌断面在各种因素影响下衬砌和围岩间冻胀压力的量值和分布特征,以及由冻胀压力引起的结构内力分布特征。研究表明,直墙式断面受冰胀力最大,曲墙式次之,圆形面最小;曲墙式、直墙式断面冻胀力均呈分布荷载形态,前者拱脚及仰拱脚处冻胀力最大,后者边墙、底板处冻胀力最大。  相似文献   

12.
隧道斜交穿越地裂缝的模型试验研究   总被引:1,自引:0,他引:1  
李建军  邵生俊  熊田芳 《岩土力学》2010,31(Z1):115-120
西安地区由北向南间隔分布有十多条近东西走向的地裂缝,建设中的多条地铁线路与地裂缝呈斜交状态。为了揭示地铁隧道斜交穿越地裂缝时受地裂缝活动而产生的力学性状变化,采用50:1几何相似比尺的物理模型试验仪,在合理模拟围岩地层、衬砌结构、应力条件、地裂缝与洞轴线交角及其错动位移基础上,开展了斜交地裂缝活动条件下隧道衬砌结构与围岩相互作用的物理模型试验研究,并与正交地裂缝活动下的测试结果进行了对比分析。表明斜交地裂缝活动对地铁隧道的影响范围更大,各变形缝均有明显的沉降差发展;邻近斜交地裂缝的衬砌结构易处于“悬臂梁”受力状态,衬砌结构不均匀沉降使其产生旋转位移,围岩土压力变化使衬砌结构内力产生显著变化;随着地裂缝错动位移的发展,上盘内拱顶和下盘拱顶、拱底出现围岩作用的加强,而上盘拱底出现围岩作用的松弛。与隧道正交穿越地裂缝的情况比较,斜交穿越地裂缝时围岩土压力和衬砌结构内力变化更大,易出现拉裂破坏。  相似文献   

13.
和龙沿江公路傍山隧道偏压特征分析   总被引:4,自引:1,他引:3  
傍山隧道作为一种偏压隧道,其潜在的灾害问题非常突出。通过具体的工程实例,采用有限元方法进行了隧道偏压特征分析,阐述了偏压隧道围岩受力变形特征。在应力特征上,表现为临江面硐壁应力较内壁应力值偏高,最大值达1.36 MPa,而内壁应力最大值仅为1.13 MPa。偏压主要集中在外侧硐底拱肩处,即内、外两侧拱肩处围压不对称分布,外侧拱肩部位形变压力增大。位移特征上,表现为以内侧硐底为支点,向临空面方向偏移的扁形曲线。其水平向的最大位移偏移量约7.4 cm,竖直方向最大位移偏移量约4.1 cm。且边墙位移不对称分布,不出现底拱位移曲线的特点。  相似文献   

14.
马少坤  WONG K S  吕虎  吴宏伟  赵乃峰 《岩土力学》2013,34(11):3055-3060
在膨胀土地基中进行隧道对群桩影响的三维离心模型试验研究,目标地层损失比为2%,着重研究引起的地基沉降槽、桩的附加沉降、附加弯矩、轴力的变化规律。试验得出:隧道开挖沉降槽空间效应明显;隧道开挖从-0.75D至1.25D时,桩附加沉降呈线性增长,隧道开挖至1.25D以后,桩依然沉降明显。前桩与后桩沉降值不同,桩帽会出现倾斜;前桩上部出现负附加弯矩而下部出现正附加弯矩,而后桩仅在下部出现正附加弯矩;前桩附加弯矩最大值出现在隧道轴线附近,且比后桩附加弯矩大得多;前桩附加轴力随着隧道的开挖而增加,且每步最大值在隧道轴线附近。后桩的轴力也随隧道的开挖而增加,但每步最大值出现在桩顶附近。  相似文献   

15.
地裂缝剖面形态对地铁隧道变形影响模型试验研究   总被引:2,自引:0,他引:2  
李凯玲  门玉明  刘洋  姜容 《岩土力学》2011,32(6):1690-1696
为揭示隧道底部脱空与结构纵向变形之间的对应关系,模型试验以西安地铁隧道穿越地裂缝带为研究背景,采用圆形地铁隧道结构,研究了在不同地裂缝剖面活动特征下的隧道纵向应变变化规律及其垂直位移。试验结果表明,随着错位量增加,隧道底部脱空区域扩展过程可分为3个阶段:共同变形阶段、临界脱空阶段和脱空发展阶段。针对地裂缝的不同剖面活动形式,隧道结构内部应力将出现很大差异,建议在施工中对应不同地裂缝带采取不同的施工方案。通过监控,结合模型试验的应力应变发展变化规律,可判断结构底部脱空的发展趋势,为西安地铁穿越地裂缝带的结构设计和安全运行提供重要的参考依据。  相似文献   

16.
邹育麟  何川  周艺  汪波  许金华 《岩土力学》2013,34(7):2000-2008
以在建的穿越5•12强震区发震断裂带的广甘高速公路杜家山隧道为工程依托,选取20 m典型围岩区段为试验段,对有、无系统锚杆时的洞周位移、锚杆轴力、钢拱架内力、围岩与初支接触压力、及其二衬内力进行实测对比分析,探讨锚杆支护作用效果不明显的成因,提出了在强震区软弱破碎千枚岩隧道围岩中采用“钢喷”初期支护的支护方案。研究结果表明:设置锚杆的断面,其锚杆轴力值较小,最终洞周变形值及围岩与初支的接触压力值相对偏大,钢拱架和二衬的安全储备相对不足;锚杆的施工不仅在某种程度上加剧了对深部围岩的扰动,而且还延误了喷射混凝土和钢支撑支护对暴露围岩及时封闭的最佳时机;震后深部围岩的震裂损伤和震裂岩体地下水的渗透性增强,致使围岩松弛区域超过了锚杆设置范围,且锚杆与围岩间的黏结力被削弱。  相似文献   

17.
张凡  曹振  李涛 《岩土工程技术》2006,20(6):294-296,299
南京某隧道工程垂直支护段采用自钻式土钉与SMW机械施工止水帷幕相结合复合土钉支护技术,介绍了该技术的设计、施工方法,并结合现场试验分析了其受力及变形机理。  相似文献   

18.
为研究运营盾构隧道附近基坑开挖对隧道管片受力的影响,针对基坑开挖引起旁侧盾构隧道围压变化的机制进行了分析,提出了一种能描述隧道受力-位移-再平衡过程的附加围压重分布模型,并推导出附加围压的计算公式。采用修正惯用法计算相应围压作用下的衬砌内力。根据实际工程做算例分析,研究基坑开挖对盾构隧道围压和内力的影响,并进行影响因素分析。分析结果表明:基坑开挖前隧道围压呈“钟形”分布;当基坑开挖后,隧道两侧的围压减小,基坑开挖侧的围压减小量更多;基坑开挖会使旁侧隧道正负弯矩值和正负剪力值增大,拱顶和拱底的轴力减小;随着基坑侧壁应力释放系数的增大,附加围压和附加弯矩的绝对值都会增加,而弯矩对基坑开挖卸载的响应更为明显;埋深较浅的盾构隧道对旁侧基坑开挖的影响更敏感,埋深较大的隧道,尤其是埋深大于基坑开挖深度的隧道,对旁侧基坑开挖影响的敏感度会明显降低;随着基坑与旁侧隧道净距的增加,基坑开挖对隧道的影响也会减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号