首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Geodinamica Acta》2001,14(1-3):147-158
Central Anatolia has undergone complex Neotectonic deformation since Late Miocene–Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE–SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone.Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N–S convergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE–SW-trending extensional basin developed on this plateau in Late Miocene–Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline–alkaline volcanics. The volcanic sequence is unconformably overlain by Pliocene lacustrine–fluviatile deposits intercalated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained clastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional Hırka–Kızılırmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene–Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazlığı pull-apart basins. The Sultansazlığı basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Dağı).The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedge-like Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate.  相似文献   

2.
Kadir Dirik 《Geodinamica Acta》2013,26(1-3):147-158
Abstract

Central Anatolia has undergone complex Neotectonic deformation since Late Miocene-Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE-SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone. Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N-S con- vergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE-SW- trending extensional basin developed on this plateau in Late Miocene-Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline-alkaline volcanics. The volcanic sequence is uncon- formably overlain by Pliocene lacustrine-fluviatile deposits interrelated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained elastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional H?rka— k?zd?rmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene-Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazl??? pull-apart basins. The Sultansazl??? basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Da??).

The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedgelike Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

3.
《Geodinamica Acta》2001,14(1-3):133-145
A large sinistral intracontinental transcurrent structure, the Central Anatolian Fault Zone (CAFZ), is located between Erzincan in the northeast and offshore of Anamur county in the southwest of Turkey. Northeastern and southwestern segments of the fault zone are linked to each other by an intervening and approximately N–S-trending transtensional structure, the Erciyes pull-apart basin (EPB). The Kızılırmak–Erkilet and Dökmetaş segments of the CAFZ bend southwards at about 45°–50° near Kayseri and result in a releasing double bend, which has nucleated both the EPB and its main feature, the Erciyes stratovolcano complex (ESVC) since Middle Pliocene time. The EPB is a ∼35-km-wide, 120-km-long, 1.2-km-deep, lazy S-shaped and actively-growing depression with the ESVC forming a high-standing central barrier between the northern and southern parts of the basin. Hence, the EPB appears as two separate basins, namely the ‘Sultansazlığı and Kayseri–Sarımsaklı depressions’. However, this is not correct, because development of the EPB and ESVC has been coeval with the volcanic activity producing the ESVC continuing into prehistoric times. Development of the EPB is continuing as indicated by faulted, uplifted and terraced Pleistocene–Early Holocene palaeolake beach deposits, and historical to recent earthquakes. Accumulative throws on the eastern and western margin-bounding faults of the EPB are 1225 m and 720 m respectively and show that basin development has been asymmetrical.  相似文献   

4.
Abstract

A large sinistral intracontinental transcurrent structure, the Central Anatolian Fault Zone (CAFZ), is located between Erzincan in the northeast and offshore of Anamur county in the southwest of Turkey. Northeastern and southwestern segments of the fault zone are linked to each other by an intervening and approximately N-S-trending transtensional structure, the Erciyes pull-apart hasin (EPB). The Krzihrmak-Erkilet and Dökmeta? segments of the CAFZ bend southwards at about 45°-50° near Kayseri and result in a releasing double bend, which has nucleated both the EPB and its main feature, the Erciyes stratovolcano complex (ESVC) since Middle Pliocene time. The EPB is a ~35-km-wide, 120-km-long, 1.2-km-deep, lazy S-shaped and actively-growing depression with the ESVC forming a high-standing central barrier between the northern and southern parts of the basin. Hence, the EPB appears as two separate basins, namely the ‘Sultansazh?i and Kayseri-Sarimsakli depressions’. However, this is not correct, because development of the EPB and ESVC has been coeval with the volcanic activity producing the ESVC continuing into prehistoric times. Development of the EPB is continuing as indicated by faulted, uplifted and terraced Pleistocene-Early Holocene palaeolake beach deposits, and historical to recent earthquakes. Accumulative throws on the eastern and western margin-bounding faults of the EPB are 1225 m and 720 m respectively and show that basin development has been asymmetrical. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

5.
ABSTRACT

At the end of the Cenozoic, western Turkey was fragmented by intense intra-continental tectonic deformation resulting in the formation of two extensional areas: a transtensional pull-apart basin systems in the northwest, and graben systems in the central and southwest areas. The question of the connection of this Late Cenozoic extensional tectonics to plate kinematics has long been an issue of discussion. This study presents the results of the fault slip data collected in Bak?rçay Basin in the west of Turkey and addresses changes in the direction of extensional stresses over the Plio-Quaternary. Field observations and quantitative analysis show that Bak?rçay Basin is not a simple graben basin that has evolved during a single phase. It started as a graben basin with extensional regime in the Pliocene and was transformed into a pull-apart basin under the influence of transtensional forces during the Quaternary. A chronology of two successive extensional episodes has been established and provides reasoning to constrain the timing and location of subduction-related back-arc tectonics along the Aegean region and collision-related extrusion tectonics in Turkey. The first NW–SE trending extension occurred during the Pliocene extensional phase, characterized by slab rollback and progressive steepening of the northward subduction of the African plate under the Anatolian Plate. Western Turkey has been affected, during the Middle Quaternary, by regional subsidence, and the direction of extension changed to N–S, probably in relation with the propagation of the North Anatolian Fault System. Since the Late Quaternary, NE–SW extension dominates northwest Turkey and results in the formation and development of elongated transtensional basin systems. Counterclockwise rotation of Anatolian block which is bounded to the north by the right-lateral strike-slip North Anatolian Fault System, accompanies to this extensional phase.  相似文献   

6.
Aydın  Ufuk  Pamuk  Eren  Ozer  Caglar 《Natural Hazards》2022,110(1):587-606
Natural Hazards - The North Anatolian Fault Zone (NAFZ) between the Arabian, Eurasian and African plates is one of the world’s most dangerous tectonic units. After the 1939 Erzincan...  相似文献   

7.
The Sivas Tertiary Basin is one of the central Anatolian basins that formed over the collision zone between the Pontides and the Anatolide-Tauride belts. The basin, which is floored by southerly obducted Neotethyan ophiolite sheets onto the Taurides during the Late Cretaceous time interval, occupies a key position in the sedimentary record of the continental collision processes. The central and easternmost parts of the Sivas Basin around the Hafik (Sivas) and Kemah (Erzincan) regions have been studied with respect to tectonostratigraphy, tectonic style, and kinematics.

The tectonic style of the Sivas Basin is characterized mainly by polyphase thrust systems developed along a regional NNW-SSE shortening direction. The general transport directions are oriented toward the south and southeast. However, N-vergent thrust development in the late Oligocene and late Pliocene-Quaternary epochs occurred in the central part of the Sivas Basin where thrust propagation is controlled mainly by a decollement surface at the bottom of an Oligocene gypsum mass in the Hafik Formation. In the eastern part of the basin, thrust propagation is controlled by several decollement surfaces in the basin sequences.

This study demonstrates that the central and eastern parts of the Sivas Basin experienced significant shortening, involving both basin deposits and basement. This contraction has been largely underestimated by previous studies, and the eastward-narrowing geometry of the basin can be related to an increasing amount of contraction toward the east. The age of thick gypsum-rich formations, previously attributed to the late Miocene, is now restricted to the Oligocene by consideration of both the stratigraphic relationships with lower Miocene shallow-marine formations and the geometry of the thrust systems.  相似文献   

8.
《Geodinamica Acta》2001,14(1-3):3-30
Turkey forms one of the most actively deforming regions in the world and has a long history of devastating earthquakes. The better understanding of its neotectonic features and active tectonics would provide insight, not only for the country but also for the entire Eastern Mediterranean region. Active tectonics of Turkey is the manifestation of collisional intracontinental convergence- and tectonic escape-related deformation since the Early Pliocene (∼5 Ma). Three major structures govern the neotectonics of Turkey; they are dextral North Anatolian Fault Zone (NAFZ), sinistral East Anatolian Fault Zone (EAFZ) and the Aegean–Cyprean Arc. Also, sinistral Dead Sea Fault Zone has an important role. The Anatolian wedge between the NAFZ and EAFZ moves westward away from the eastern Anatolia, the collision zone between the Arabian and the Eurasian plates. Ongoing deformation along, and mutual interaction among them has resulted in four distinct neotectonic provinces, namely the East Anatolian contractional, the North Anatolian, the Central Anatolian ‘Ova’ and the West Anatolian extensional provinces. Each province is characterized by its unique structural elements, and forms an excellent laboratory to study active strike-slip, normal and reverse faulting and the associated basin formation.  相似文献   

9.
The tectonic significance of the Erzincan earthquake of 13 March, 1992 in Eastern Turkey is discussed. The intersection of the North Anatolian and The East Anatolian strike-slip fault zones has resulted in formation of the Erzincan pull-apart basin and new seismically active fault branches on its northeastern side. Local concentrations of surface ruptures strike along the most active branches of the North Anatolian fault zone (N300W) for 62 km. They are usually open fractures with northeastern sides uplifted up to 20 cm and rarely with dextral offset up to 10 cm. These secondary ruptures manifest indirectly oblique seismic fault displacement corresponding to the Late Quaternary motion on the fault zone, although at the surface the dextral component has been suppressed relative to the vertical one.  相似文献   

10.
The Sivas Basin extends over a major crustal structure underlying the contact zone between the Tauride and Pontide belts. The Kirsehir block, a continental crustal element lying between the main belts, introduces a subordinate suture in front of the Pontides—the Inner Tauride suture. The junction of the two main sutures occurs between Hafikand Imranli. Four structural zones have been considered. The northern basement of the basin, which includes both the Kirsehir continental crust and thrust sheets of ophiolite and pelagic sediments, forms an imbricate stack with an Eocene cover. The Eocene cover shows two distinct sequences: marine neritic and continental basalts overlying the Kirsehir basement, and deltaic and basinal deposits lying to the southeast. Southward tectonic stacking of the entire pile has occurred repeatedly since Oligocene time. The Sivas Basin proper is separated from the Kirsehir basement by the Kizilirmak Basin. This new structural unit consists of nearly undeformed, middle Miocene sandstones and conglomerates and a Pliocene lacustrine limestone.

The Sivas Basin proper corresponds to a fold-and-thrust belt involving an Oligocene deltaic plain with intervening large-scale evaporitic stages and subsequent lower Miocene shallow-marine deposits. Three distinct tectonic domains are considered—(1) an eastern A domain, characterized by a hinterland of deep imbricate and rare northward thrusts; (2) a transitional B domain, corresponding to a series of lateral thrust branches propagating to the southwest; this domain later was deformed by the (3) C domain, displaying a foreland-dip type of stacking. The Caldag-Tecer-Gurlevik ridge forms a structural entity of topographic highs along the southern margin of the Sivas fold-and-thrust belt. Three Eocene-cored anticlinoria arranged along an E-W relay zone fold a passive-roof composite allochthon including ophiolitic elements together with Upper Cretaceous to Eocene limestone and conglomerate. The sole of this allochthon consists of Oligocene gypsum. The Kangal Basin, a large syncline cored by Pliocene continental deposits, corresponds to the southernmost unit. The boundary with the Caldag-Tercer-Gurlevik ridge is partially concealed by a lower Miocene continental basin, overlain by a N-vergent thrust of a lower Mesozoic limestone of the Taurus platform. If the southeastward propagation of thrusting in the Sivas thrust belt and related northward thrusts at a variety of scales is considered to represent the main thrust over the undeformed Kizilirmak basin, a comparison with modern analog structural features and analog models yields a coherent interpretation of this basin in terms of its forearc-prism evolution. At a larger scale, the Sivas Basin should be considered as a piggyback basin developed along the northward-rotated rear of the Tauride wedge and the synchronous southward thrusting of the Kirsehir-Pontide wedge. At least in early Miocene time, the Inner Tauride and Erzincan sutures corresponded to a single intracontinental thrust zone along which part of the displacement of the southern front of the Tauride has been progressively transferred.  相似文献   

11.
Estimation of seismic losses is a fundamental step in risk mitigation in urban regions. Structural damage patterns depend on the regional seismic properties and the local building vulnerability. In this study, a framework for seismic damage estimation is proposed where the local building fragilities are modeled based on a set of simulated ground motions in the region of interest. For this purpose, first, ground motion records are simulated for a set of scenario events using stochastic finite-fault methodology. Then, existing building stock is classified into specific building types represented with equivalent single-degree-of-freedom models. The response statistics of these models are evaluated through nonlinear time history analysis with the simulated ground motions. Fragility curves for the classified structural types are derived and discussed. The study area is Erzincan (Turkey), which is located on a pull-apart basin underlain by soft sediments in the conjunction of three active faults as right-lateral North Anatolian Fault, left-lateral North East Anatolian Fault, and left-lateral Ovacik Fault. Erzincan city center experienced devastating earthquakes in the past including the December 27, 1939 (Ms = 8.0) and the March 13, 1992 (Mw?=?6.6) events. The application of the proposed method is performed to estimate the spatial distribution of the damage after the 1992 event. The estimated results are compared against the corresponding observed damage levels yielding a reasonable match in between. After the validation exercise, a potential scenario event of Mw?=?7.0 is simulated in the study region. The corresponding damage distribution indicates a significant risk within the urban area.  相似文献   

12.
Abstract

Turkey forms one of the most actively deforming regions in the world and has a long history of devastating earthquakes. The belter understanding of its neotectonic features and active tectonics would provide insight, not only for the country but also for the entire Eastern Mediterranean region. Active tectonics of Turkey is the manifestation of collisional intracontinental convergence- and tectonic escape-related deformation since the Early Pliocene (~5 Ma). Three major structures govern the neotectonics of Turkey; they are dextral North Anatolian Fault Zone (NAFZ), sinistral East Anatolian Fault Zone (EAFZ) and the Aegean–Cyprean Arc. Also, sinistral Dead Sea Fault Zone has an important role. The Anatolian wedge between the NAFZ and EAFZ moves westward away from the eastern Anatolia, the collision zone between the Arabian and the Eurasian plates. Ongoing deformation along, and mutual interaction among them has resulted in four distinct neotectonic provinces, namely the East Anatolian contractional, the North Anatolian, the Central Anatolian ‘Ova’ and the West Anatolian extensional provinces. Each province is characterized by its unique structural elements, and forms an excellent laboratory to study active strike-slip, normal and reverse faulting and the associated basin formation. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

13.
The east–west-trending North Anatolian Fault makes a 17° bend in the western Marmara region from a mildly transpressional segment to a strongly transtensional one. We have studied the changes in the morphology and structure around this fault bend using digital elevation models, field structural geology, and multi-channel seismic reflection profiles. The transpression is reflected in the morphology as the Ganos Mountain, a major zone of uplift, 10 km wide and 35 km long, elongated parallel to the transpressional Ganos Fault segment west of this bend. Flat-lying Eocene turbidites of the Thrace Basin are folded upwards against this Ganos Fault, forming a monocline with the Ganos Mountain at its steep southern limb and the flat-lying hinterland farther north at the flat limb. The sharp northern margin of the Ganos Mountain coincides closely with the monoclinal axis. The strike of the bedding, and the minor and regional fold axes in the Eocene turbidites in Ganos Mountain are parallel to the trace of the Ganos Fault indicating that these structures, as well as the morphology, have formed by shortening perpendicular to the North Anatolian Fault. The monoclinal structure of Ganos Mountain implies that the North Anatolian Fault dips under this mountain at 50°, and this ramp terminates at a decollement at a calculated depth of 8 km. East of this fault bend, the northward dip of the North Anatolian Fault is maintained but it has a normal dip-slip component. This has led to the formation of an asymmetric half-graben, the Tekirdağ Basin in the western Sea of Marmara, containing a thickness of up to 2.5 km of Pliocene to Recent syn-transform sediments. As the Ganos uplift is translated eastwards from the transpressional to the transtensional zone, it undergoes subsidence by southward tilting. However, a morphological relic of the Ganos uplift is maintained as the steep northern submarine slope of the Tekirdağ Basin. The minimum of 3.5 km of fault-normal shortening in the Ganos Mountain, and the minimum of 40 km eastward translation of the Ganos uplift indicate that the present fault geometry has existed for at least the last 2 million years.  相似文献   

14.
The Neogene succession in the western margin of Çank?r? Basin is fragmented by a NNE‐trending tectonic sliver having normal faulted western and thrusted eastern margins. This newly recognized E‐vergent sliver was created by the NW–SE compression due to the North Anatolian and K?r?kkale–Erbaa Fault zones following late Pliocene, accommodating the internal deformation of the Anatolian plate. Determinations of the K?lçak, Kumarta? and Hançili formations on both sides of this tectonic sliver invalidate the stratigraphical, structural and basin evolution models previously proposed by Kaymakç?.  相似文献   

15.
The NNE-trending Neo-Tethyan suture zone between Ankara and Çanklrl, thrusts eastward onto different stratigraphic levels of the Neogene succession; however, its western side shows a normal fault relationship. This E-vergent tectonic sliver was inactive during the accumulation of the Miocene–Lower Pliocene sedimentary succession and was created by the movement of the North Anatolian Fault Zone and its splay after the late Pliocene, indicating internal deformation of the Anatolian plate. These results are inconsistent with the previous suggestion that intracontinental convergence related to Neo-Tethyan orogeny continued until the Pliocene (Ankara Orogenic Phase).  相似文献   

16.
The Elbe Fault System (EFS) is a WNW-striking zone extending from the southeastern North Sea to southwestern Poland along the present southern margin of the North German Basin and the northern margin of the Sudetes Mountains. Although details are still under debate, geological and geophysical data reveal that upper crustal deformation along the Elbe Fault System has taken place repeatedly since Late Carboniferous times with changing kinematic activity in response to variation in the stress regime. In Late Carboniferous to early Permian times, the Elbe Fault System was part of a post-Variscan wrench fault system and acted as the southern boundary fault during the formation of the Permian Basins along the Trans-European Suture Zone (sensu [Geol. Mag. 134 (5) (1997) 585]). The Teisseyre–Tornquist Zone (TTZ) most probably provided the northern counterpart in a pull-apart scenario at that time. Further strain localisation took place during late Mesozoic transtension, when local shear within the Elbe Fault System caused subsidence and basin formation along and parallel to the fault system. The most intense deformation took place along the system during late Cretaceous–early Cenozoic time, when the Elbe Fault System responded to regional compression with up to 4 km of uplift and formation of internal flexural highs. Compressional deformation continued during early Cenozoic time and actually may be ongoing. The upper crust of the Elbe Fault System, which itself reacted in a more or less ductile fashion, is underlain by a lower crust characterised by low P-wave velocities, low densities and a weak rheology. Structural, seismic and gravimetric data as well as rheology models support the assumption that a weak, stress-sensitive zone in the lower crust is the reason for the high mobility of the area and repeated strain localisation along the Elbe Fault System.  相似文献   

17.
敦密断裂带白垩纪两期重要的变形事件   总被引:1,自引:1,他引:0  
本文报道了敦密断裂带糜棱岩中黑云母~(40)Ar/~(39)Ar定年结果和大规模走滑-逆冲断裂的几何学、运动学特征及其形成时代,以便揭示断裂带两期变形事件的构造属性。黑龙江省密山市花岗质糜棱岩中黑云母~(40)Ar/~(39)Ar加权平均年龄为132.2±1.2Ma,它是敦密断裂带经历伸展事件的冷却年龄,也是东北亚大陆边缘在早白垩世Hauterivian期-Albian期发生强烈区域伸展作用的产物。密山市至辽宁省清原县系列大型走滑-逆冲断层和断层相关褶皱揭示出在晚白垩世晚期-末期发生右旋走滑-逆冲事件,该事件规模大,影响范围广,导致整个断裂带遭受到强烈改造,形成对冲式断裂系统。将研究区走滑-逆冲断裂与山东省郯庐断裂带中段挤压构造对比,认为郯庐断裂带北段和中段在晚白垩世末期都发生了强烈的走滑-逆冲事件,它们具有相同的构造特征和构造属性。  相似文献   

18.
《Geodinamica Acta》2001,14(1-3):169-175
To the east of the Sea of Marmara, the North Anatolian fault (NAF) branches into two strands, namely the northern and the southern strands. The Adapazarı pull-apart basin is located in the overlapping zone of the Dokurcun and the İzmit–Adapazarı segments of the northern strand. The combined temporal ranges of the arvicolids from the Karapürçek formation (the first unit of the basin fill), deposited in the primary morphology of the Adapazarı pull-apart basin, cover the latest Villanyian (latest Pliocene) and the Biharian (Early Pleistocene) time interval. The Değirmendere fauna collected from the lowermost sediments of this formation suggests that the Adapazarı pull-apart basin started to form in the latest Pliocene. This, in turn, suggests that the dextral movement along the northern strand of the NAF commenced during the latest Pliocene. A new species, Tibericola sakaryaensis is also described.  相似文献   

19.
The Asturian Arc was produced in the Early Permian by a large E–W dextral strike–slip fault (North Iberian Megashear) which affected the Cantabrian and Palentian zones of the northeastern Iberian Massif. These two zones had previously been juxtaposed by an earlier Kasimovian NW–SE sinistral strike–slip fault (Covadonga Fault). The occurrence of multiple successive vertical fault sets in this area favoured its rotation around a vertical axis (mille-feuille effect). Along with other parallel faults, the Covadonga Fault became the western margin of a proto-Tethys marine basin, which was filled with turbidities and shallow coal-basin successions of Kasimovian and Gzhelian ages. The Covadonga Fault also displaced the West Asturian Leonese Zone to the northwest, dragging along part of the Cantabrian Zone (the Picos de Europa Unit) and emplacing a largely pelitic succession (Palentian Zone) in what would become the Asturian Arc core. The Picos de Europa Unit was later thrust over the Palentian Zone during clockwise rotation. In late Gzhelian time, two large E–W dextral strike–slip faults developed along the North Iberian Margin (North Iberian Megashear) and south of the Pyrenean Axial Zone (South Pyrenean Fault). The block south of the North Iberian Megashear and the South Pyrenean Fault was bent into a concave, E-facing shape prior to the Late Permian until both arms of the formerly NW–SE-trending Palaeozoic orogen became oriented E–W (in present-day coordinates). Arc rotation caused detachment in the upper crust of the Cantabrian Zone, and the basement Covadonga Fault was later resurrected along the original fault line as a clonic fault (the Ventaniella Fault) after the Arc was completed. Various oblique extensional NW–SE lineaments opened along the North Iberian Megashear due to dextral fault activity, during which numerous granitic bodies intruded and were later bent during arc formation. Palaeomagnetic data indicate that remagnetization episodes might be associated with thermal fluid circulation during faulting. Finally, it is concluded that the two types of late Palaeozoic–Early Permian orogenic evolution existed in the northeastern tip of the Iberian Massif: the first was a shear-and-thrust-dominated tectonic episode from the Late Devonian to the late Moscovian (Variscan Orogeny); it was followed by a fault-dominated, rotational tectonic episode from the early Kasimovian to the Middle Permian (Alleghenian Orogeny). The Alleghenian deformation was active throughout a broad E–W-directed shear zone between the North Iberian Megashear and the South Pyrenean Fault, which created the basement of the Pyrenean and Alpine belts. The southern European area may then be considered as having been built by dispersal of blocks previously separated by NW–SE sinistral megashears and faults of early Stephanian (Kasimovian) age, later cut by E–W Early Permian megashears, faults, and associated pull-apart basins.  相似文献   

20.
The Sivas Basin is one of several Central Anatolian basins. It developed mainly after the closure of the northern branch of Neotethys. Its location between the Kirsehir Massif and the Taurides implies that it should not be confused with the Inner Tauride ocean located south of the Eastern Taurides. The basement of the Sivas Basin consists of ophiolitic nappes and melanges that were thrust toward the margins of the continental blocks present in this area—the Pontide belt to the north and the Anatolide-Tauride platform to the south. The basin was initiated by tectonic subsidence at the end of the Cretaceous, and it can be compared to a foreland basin during Paleocene and early to middle Eocene time. It was emergent during late Eocene and Oligocene time, although it continued to subside. A transgression in some parts of the basin occurred during the Oligocene and early Miocene (maximum flooding). During the Pliocene, it was affected by regional compression directed toward the NNW, which resulted from convergence of the Arabian and Eurasian plates. This basin may have developed as an intracontinental basin within the Tauride platform and probably never had an oceanic basement. As a result of this work, the general paleogeographic organization of Central Anatolia and Northern Tethys during the Mesozoic should to be revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号