首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
煤矿开采不当会对水资源与水环境造成破坏,尤其在生态环境相对脆弱地区更是如此。针对目前矿井涌水量预测大多以单一工作面或煤矿为评价单元,对沟域内煤矿群同时长期开采的地下水环境影响重视不够。选择头道河则沟域为研究区,以地下水勘查、井田勘探资料为依据,构建了头道河则完整沟域的地下水三维非稳定流数值模型,根据地下水、地表水监测数据和煤矿群开采涌水量的长观资料进行模型的识别与验证,以9#煤矿为典型矿区,分析综采和条带充填2种不同开采方式下矿井涌水量及其对水环境的影响。研究结果表明:(1)综采状态下,矿井涌水量增加0.70×104 m3/d,导致地下水溢出量减少0.20×104 m3/d,引发矿区及区域地下水水位下降0.21~17.92 m;条带充填开采状态下,矿井涌水量增加0.11×104 m3/d,导致地下水溢出量减少0.04×104 m3/d,引发矿区及区域地下水水位下降0.01~0.44 m。(2)煤矿按综采方式开采,...  相似文献   

2.
为了满足区域性松散沉积层地区地面沉降的防控要求,规划评价地下水的可采资源量,根据渗流理论和土力学理论,建立了地下水三维非稳定渗流与地面沉降耦合数学模型,并考虑了含水层孔隙度、渗透系数、储水率随含水层发生固结沉降的变化特征。采用三维有限元数值分析方法,以江苏省南通市地下水开采为例,基于地面沉降的控制要求,规划评价出了各乡镇各含水层的地下水可采资源量。结果表明:地下水开采布局科学规划后,总的可采资源量为17 870.56×104 m3/a,较现状开采量10 902.32×104 m3/a有较大幅度的增加。地下水三维变参数非稳定流与地面沉降耦合模型可以更加精确地刻画三维水文地质体的特征,更加符合实际情况。  相似文献   

3.
基于地下水陆面过程耦合模型的黑河干流中游耗水分析   总被引:3,自引:1,他引:2  
耗水分析能够直接揭示水资源利用的本质, 蒸散发是流域尺度耗水的主体. 将一个典型的陆面过程模型和一个地下水模型紧密耦合, 从而在地下水模型中增加具有物理机理的蒸散发描述, 同时改进陆面过程模型中地下水的动力过程, 由此在发挥这两类模型各自优势的基础上, 构建了一个地下水-陆面过程耦合模型. 利用该模型模拟了黑河干流中游2008年逐小时的蒸散发过程. 结果表明: 黑河干流中游2008年总耗水量约为35.7×108 m3, 耗水最大的地表类型是农作物为19.3×108 m3、 裸地和戈壁为7.2×108 m3、 草地为6.0×108 m3、 稀疏植被为3.1×108 m3, 其中, 不同地表类型的年蒸腾量分别为8.8×108 m3、 0.02×108 m3、 2.2×108 m3以及0.4×108 m3, 对应它们的年蒸散发强度分别为: 580 mm、 117 mm、 331 mm以及202 mm. 通过耗水平衡分析也得到2008年黑河干流中游地下水呈负平衡状态, 全年地下水超采约0.9×108 m3, 其中区内地下水储量在7—11月间呈增加趋势, 其他各月呈减少趋势.  相似文献   

4.
沈永平 《冰川冻土》2002,24(5):499-499
根据 20世纪 80年代初水利部对全国水资源进行的评价,我国的多年平均降水总量为 6.2×1012m3,除通过土壤水直接利用于天然生态系统与人工生态系统外,可通过水循环更新的地表水和地下水的多年平均水资源总量为 2.8×1012m3.按 1997年人口统计,我国人均水资源量为 2220m3,预测到2030年我国人口增至 16×108时,人均水资源量将降到 176.0m3.按国际上一般承认的标准,人均水资源量少于 170 0m3为用水紧张的国家.  相似文献   

5.
洞庭湖区水系发达,水文地质条件复杂,人类活动强烈,地表水和地下水的水力联系变化频繁,其研究的难度以及由此造成的研究不足影响了对湖区地下水赋存和运动规律的深入认识。本文以洞庭湖整体为研究对象,采用水位动态分析和氡(222Rn)同位素示踪法,定性和定量研究枯水期洞庭湖区地表水与地下水的交互作用关系与交互通量。枯水期洞庭湖区水位和氡浓度空间分布特征指示研究区内地下水向湖水排泄,尤以东洞庭湖最为显著。氡箱模型计算结果显示枯水期地下水排泄222Rn通量为455.09 Bq/(m2·d),占总输入222Rn通量的60.07%,地下水排泄总量为0.29×108 m3/d,平均排泄速率为56.27 mm/d,地下水排泄对湖水的贡献率为7.04%。敏感性分析表明:风速、地下水和湖水222Rn浓度以及湖面面积等参数较为敏感,合理布置取样点并提高敏感参数测量准确度能提高模型计算结果的可靠度。氡同位素示踪法物理意义明确、操作过程简便,是研究复杂区域地下水补、...  相似文献   

6.
新疆开都-孔雀河流域绿洲需水量与稳定性分析   总被引:3,自引:0,他引:3  
水是绿洲存在和发展的核心, 干旱区绿洲稳定性与水密切相关. 根据2000-2009年资料, 采用蒸发系数法和定额法估算开都-孔雀河流域绿洲自然生态系统和社会经济系统综合需水量, 并对水资源约束条件下的绿洲稳定性进行初步探讨. 结果表明: 2000-2009年, 绿洲年均总需水量理论值约为54.80×108 m3, 其中开都河绿洲总需水量约为20.55×108 m3, 孔雀河绿洲总需水量约为21.90×108 m3, 博斯腾湖区耗水量约为12.35×108 m3, 与绿洲10 a平均供水量相比, 供需表现出极大地不平衡性. 水资源可承载绿洲面积(不含博斯腾湖)约为3139.66 km2, 其中可承载灌溉地面积约为1395.41 km2, 与绿洲10 a平均面积5 248 km2相比, 差别较大, 绿洲处于不稳定状态, 现状绿洲面积应适当收缩. 最后, 对博斯腾湖最低生态水位进行讨论, 初步把大湖最低水位定为海拔1 045 m, 小湖最低生态水位定为海拔1 046.5 m.  相似文献   

7.
利用水文地质钻探、同位素技术、水位统测等方法,分析西露天矿涌水来源,评价各来源对西露天矿涌水的补给量,为西露天矿地质灾害评估和矿坑规划利用提供科学依据.结果表明:西露天矿坑是区域地下水汇集区,周边地下水向矿坑内径流.周边地区进入西露天矿的总水量为2477.8×104m3/a,来源主要为浑河通过北帮第四系含水层的侧向补给和大气降水补给.其中北帮浑河侧向补给的涌水量约1115.7×104m3/a,约占45.0%,大气降水直接降入矿坑水量约997.8×104m3/a,约占40.3%.古城子河通过西露天矿西帮侧向补给矿坑的水量约177.9×104m3/a;地下水通过西露天矿南帮杨柏河、刘山河古河道等地段侧向径流补给的水量约186.4×104m3/a;东帮在东露天矿影响下接近疏干.  相似文献   

8.
1980—2017年祁连山水源涵养量时空变化特征   总被引:1,自引:0,他引:1  
祁连山是中国西北地区十分重要的生态安全屏障,也是当地极为关键的水源涵养区。基于InVEST模型中的产水量模块,对祁连山水源涵养量和时空变化进行了分析并探讨其影响因素。结果表明:祁连山多年平均产水总量和水源涵养总量约为93.03×108 m3和57.83×108 m3。从时间变化来看,水源涵养量呈上升趋势,上升速率约为0.196 mm·a-1;在空间上呈“东多西少”的分布格局,与年降水量的空间分布大致相同。不同土地利用类型下的水源涵养总量依次为:草地(31.87×108 m3)>林地(16.71×108 m3)>耕地(4.92×108 m3)>其他用地(2.29×108 m3)>建设用地(0.63×108 m3)。降水量与水源涵养量在所有研究时段内均存在显著正相关性。不同时期土地利用类型的变化也会对水源涵养量产生重要影响,研究区草地面积变化对水源涵养量影响较大。根据建立的经验公式并参考已有研究成果,估算得出研究区多年冻土地下冰储量在550 km3以上,在全球气候变暖的背景下,消融趋势明显。研究可为祁连山水资源合理配置和生态系统保护提供参考。  相似文献   

9.
北京平原区快速发展的地面沉降对高速铁路的发展构成了威胁,地面沉降与过量开采地下水造成的水位下降关系密切,为此有针对性地开展基于高速铁路的地下水动态与地面沉降相关关系研究对于高铁安全运行意义重大,特别是对于制定高铁沿线地下水开采方案、地面沉降减缓措施和工程措施至关重要。基于其对高速铁路的影响模式,本文将地面沉降分为区域沉降和局部沉降两种类型。针对区域沉降,利用Logistic方程,使用天竺、望京及王四营分层地面沉降和地下水位数据,构建了不同层位地下水水位变化与地面沉降之间的相关关系模型,通过ABAQUS计算局部地区,对于6m高路堤和15m CFG桩处理深度的地基而言,当渗透系数k=2m/d,距离线路边缘25m处浅层地下水下降10m将产生约61—85mm的沉降。  相似文献   

10.
我国西北旱区生态环境脆弱,是全球气候变化的敏感区域之一。近几年来,在全球暖化的大环境下,区域地表水产流机制改变诱发的水文与生态问题越发突出。本文以青藏高原北部极端干旱的格尔木河流域为例,利用SWAT建立流域主要产流的山区地表水文模型,结合区域水文资料等定量研究格尔木河径流演化及其渗漏补给地下水的时空演变特征。结果表明,在1976~2014年期间格尔木河出山口径流量呈递增趋势,年增长率达0.38 (m3·s-1)·a-1,多年平均径流增量约1.66×108 m3,且夏季径流量增加较冬季更为显著。降水和温度是影响流域山区地表产流量增加的主要气象因子。流域出山口径流量的增加改变了盆地内地表径流入渗补给地下水的条件,格尔木河多年平均渗漏补给地下水量为9.89×108 m3。河流渗漏量的递增会打破区域地下水系统平衡,诱发一系列水文生态问题,威胁区域可持续发展。本研究可为我国应对全球气候变化带来的旱区水资源和生态环境挑战提供科学支撑。  相似文献   

11.
贵州大井流域岩溶分布广泛,岩溶水是当地人民生产和生活的主要来源。由于对岩溶水资源的不合理开发利用,水资源短缺现象经常发生。大井流域水文地质条件复杂,管道-多孔介质双重介质特征明显。文章采用MODFLOW-CFP耦合模型对大井流域展开数值模拟,进而掌握大井流域地下水运动规律、准确评价岩溶水资源,促进其合理开发利用。结果表明:大井流域管道与多孔介质交换量为6 719.1 m3·a-1,主要集中在上游和中游;总补给水量为10 977.3×104 m3·a-1,补给模数为133.495m3·km-2·a-1,其中降雨汇入量和降雨入渗量占总补给量的81.35%,而总排泄量为10 813.47×104 m3·a-1,主要在地下河出口排泄。  相似文献   

12.
李劭宁  贾晓鹏 《冰川冻土》2021,43(4):1190-1199
我国西北内陆干旱区水资源匮乏,生态环境脆弱,在全球气候变化和人类活动干扰背景下,采用同位素方法进行精细尺度地表水-地下水交互作用研究是探求当地水循环变化和水资源管理的基本要求。通过测量格尔木河流域河水、地下水样品2019年5月和8月的222Rn浓度和典型断面流量,结果发现:山区河段河水222Rn浓度最高,平均值为948.72 Bq·m-3,指示基岩裂隙水是山区河段重要补给来源;山前冲洪积扇河水222Rn浓度最低,平均值为76.71 Bq·m-3,地下水补给较少;溢出带地区河水222Rn浓度上升至平均676 Bq·m-3,地下水溢出补给河水,向下至细土平原,河水222Rn浓度呈下降趋势。时间变化上,8月与5月相比,河水222Rn浓度下降,表明地下水补给减少。溢出带S1~S2河段河水与地下水交互关系以双向转化为主,基于质量守恒原理计算河水与地下水交互通量,5月和8月累积河水渗漏通量分别为3.87 m3?s-1和0.9 m3?s-1,地下水补给通量分别为0.51 m3?s-1和0.47 m3?s-1,河水渗漏强度大于地下水补给,二者交互通量存在时空差异。  相似文献   

13.
地热水属于承压水,其储存量包括容积储存量和弹性储存量两部分,当水位处于含水层顶板以上时,已开采出的地热水只能是弹性储存量。在河北平原区进行区域地热资源评价时,地热水可开采量按照开采系数法、解析法等不同方法计算,与弹性储存量存在巨大差距。为研究地热水开采资源的构成并更加准确评价集中开采区地热水的可开采量,采用地下水均衡法对辛集集中开采区地热水开采资源量进行了计算,结果显示: 侧向补给量为126×104 m3,占开采资源量的60.9%; 越流补给量为19.7×104 m3,占开采资源量的9.55%; 弹性释水量为33.1×104 m3,占开采资源量的16.1%; 弱透水层压密释水量为27.4×104 m3,占开采资源量的13.3%。研究结果说明,集中开采区地热水的开采资源量不仅仅来自于热储层的弹性释水量,还包括侧向补给量、越流补给量和弱透水层的压密释水量。研究成果对于科学合理地开发地热资源、更好地遏制和缓解地热水开采引发的地质环境问题具有一定意义。  相似文献   

14.
超量开采地下水引发的地面沉降已成为北京平原区最主要的地质灾害之一.精准识别现阶段地面沉降主要贡献层位,查明不同水位变化模式下土层变形特征,对实现地面沉降精准防控,建立合适的地下水-地面沉降模型具有重要意义.本文根据北京市7个地面沉降监测站内分层标和水位近十几年观测资料,对不同深度土层沉降变化特征和主要沉降层位进行了精准...  相似文献   

15.
城市地面沉降是对城市规划建设、经济发展和人民生活构成威胁的地质灾害。为了探究地下水位与地面沉降的关系,本文对北京顺义地区天竺地面沉降监测站多年分层地面沉降及对应含水层组地下水位监测数据进行统计分析,建立了该地区基于累计沉降量与含水层组水位标高、水位变幅及水位波动的多元回归模型,并对所建立的回归方程进行了检验,研究分层地面沉降与地下水位变化的定量关系,并结合《全国地面沉降防治规划(2011—2020)》中北京市的控沉目标,设置该地区不同地面沉降速率控制阈值,计算得到各层位达到控制阈值时所对应的地下水位,为下一步合理调整地下水开采层位,开展地面沉降防控工作提供科学依据。  相似文献   

16.
近20a来黑河中游张掖盆地地下水动态变化   总被引:11,自引:2,他引:9  
杨玲媛  王根绪 《冰川冻土》2005,27(2):290-296
在研究黑河中游张掖盆地水文地质条件及对区内地下水进行动态分区的基础上, 总结了区内1981-2001年地下水水位、储量的时空变化规律. 结果表明: 1)盆地内部沿冲洪积扇自上而下的 4 个区域内由于赋存条件的差异, 地下水多年动态类型分异显著. 其中, 冲洪积扇中上部 20 世纪 80 年代的10 a内地下水储量累积减少56.47×106m3, 90年代地下水储量累积减少150.83×106m3; 冲洪积扇下部80年代储量减少11.80×106m3, 90年代减少77.50×106m3; 细土平原 20 a 内储量累积减少0.56×106m3; 临高河谷平原近20 a内储量增加了 1.78×106m3; 进入 90 年代后, 各区域变化幅度均有不同程度增加. 2)各区域内地下水年内动态类型复杂, 存在显著的季节差异, 在进入 90 年代后年内动态变化也均有不同程度的增强.  相似文献   

17.
依据铜陵太平-钟仓应急水源地水文地质条件构建水文地质概念模型.在此基础上,利用三维可视化软件GMS建立水源地地下水流数值模拟模型,并对模型进行了识别和验证.模型模拟期为一个应急供水周期180 d(2017-01~2017-06),水源地开采层位为承压水.模拟结果表明:在采用均匀布井方案和限定开采井水位降深不超过承压含水层顶板的条件下,水源地允许开采量为11.94×104 m3/d,达大型水源地规模(5×104 m3/d<允许开采量<15×104 m3/d);水源地承压水在应急开采条件下,激发了长江侧渗补给量,袭夺量占水源地开采总量的27.82%.同时,通过模型模拟数据对傍河水源地地下水与地表水转换规律进行了初步探讨.  相似文献   

18.
针对石羊河流域日益严峻的生态环境问题,选择干旱区生态需水计算为切入点,以变异理论为基础,利用Mann-Kendall非参数检验的方法确定石羊河北部平原区地下水位恢复的目标年,用生态功能区划方法划分生态功能区,利用达西定律、阿维里扬诺夫公式计算了地下水恢复及生态目标条件下的生态需水量,并提出了相应的生态保障措施. 结果表明:石羊河北部平原区划分为5个生态功能亚区及16个三级区,地下水位恢复的目标年份为1977年,地下水恢复到1977年的生态需水量为 55.95×108~74.10×108 m3,2015年和2020年生态目标条件下的生态需水分别为1.66×108 m3和1.80×108 m3. 考虑到地下水恢复的缓慢性和现实性,建议优先考虑设定目标条件下的植被正常生长生态需水,其次通过继续压缩人均耕地面积和灌溉定额的方式保证地下水恢复.  相似文献   

19.
现代暖期(Current Warm Period,CWP,1850—至今)以来全球气温升高,南海北部陆坡底层海水温度升高、海平面上升影响海底天然气水合物稳定性。为探究现代暖期气候变暖对南海北部陆坡水合物分解影响,本文模拟计算了东沙海域、神狐海域、西沙海域、琼东南海域水合物赋存水深最浅处水合物的饱和度在1 000年内变化情况,评估了受现代暖期气候变暖影响水合物赋存水深范围,讨论了水合物分解量及其对环境影响。结果发现:(1)受现代暖期气候变暖影响,东沙海域、西沙海域、琼东南海域水合物分解,神狐海域水合物不分解;当东沙海域、西沙海域、琼东南海域水深分别超过665、770、725 m,水合物不分解;(2)现代暖期自始以来,南海北部陆坡水合物分解量为9.36×107~3.83×108 m3,产生的甲烷量为1.54×1010~6.28×1010 m3;(3)受现代暖期气候变暖影响,南海北部陆坡每年水合物分解量为5.5×105~2.25×106 m3,产生的甲烷量为9.02×107~3.69×108 m3,这些甲烷中3.61×105~1.48×106 m3能够进入大气,对温室效应贡献度为每年我国人类生活的0.01%~0.06%;与此同时,1.77×107~7.23×107 m3甲烷可能会在海水中被氧化形成弱酸,加重南海北部陆坡海水酸化。  相似文献   

20.
刘勇  李培英  丰爱平  黄海军 《地球科学》2014,39(11):1555-1565
为了分析黄河三角洲地下水动态及其与地面沉降的关系, 利用多年地下水和地面沉降监测数据, 发现黄河三角洲广饶县和东营区的地下水动态变化剧烈且地面沉降严重, 含水层多处于超采状态, 浅、深层地下水降落漏斗先后出现.深层地下水降落漏斗中心水位下降速度达2~3m/a.近年来, 东营和广饶地面沉降漏斗中心沉降量和速率分别为155.1mm、28.2mm/a和356.0mm、64.7mm/a.借助GIS技术及数理统计法, 发现深层地下水降落漏斗与沉降漏斗空间耦合良好, 深层地下水位与地面高程呈线性正相关, 相关系数为0.92, 深层地下水过度开采已成为影响沉降的最根本因素.井灌区第三粘性压缩层成为地面沉降主要贡献层, 且深层地下水降落漏斗中心的地下水位已低于第三承压含水层临界水位, 沉降趋于严重.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号