首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
西藏西南部达巴-休古嘎布蛇绿岩带的形成与演化   总被引:16,自引:0,他引:16  
:该蛇绿岩带的岩体由地幔橄榄岩组成,主要岩石类型是方辉橄榄岩和纯橄榄岩,缺少典型蛇绿岩剖面中的洋壳单元.微量元素和稀土元素特征显示蛇绿岩形成于类似洋中脊的构造环境.笔者提出该区蛇绿岩来源于印度大陆北缘洋盆的洋壳碎片,这个陆缘洋盆与新特提斯洋主体的形成和演化准同步.洋盆的演化模式是:早三叠世,随着印度(冈瓦纳)大陆向南漂移,其北部边缘因引张裂解产生裂谷,于晚三叠世向东开口与新特提斯洋主体连通,洋盆初具洋壳性质,北侧形成阿依拉-仲巴微陆块.侏罗-白垩纪为洋盆洋壳演化期,处于类似洋中脊的构造环境.晚白垩世末洋盆开始闭合.在新特提斯洋板块向北俯冲消减过程中,阿依拉-仲巴微陆块、陆缘洋盆和印度大陆一起随着向北漂移,在印度大陆向北挤压作用下洋盆逐渐收缩以致最终闭合.  相似文献   

2.
东亚原特提斯洋(Ⅰ):南北边界和俯冲极性   总被引:1,自引:1,他引:0  
原特提斯洋是从新元古代Rodinia裂解到早古生代发育于滇缅泰/保山微陆块以北、塔里木-华北陆块以南的一个复杂成因的洋盆。长期以来对原特提斯洋的南、北边界及其早古生代末俯冲极性还存在争论,而这是恢复重建Pangea超大陆聚合前构造背景的关键。本文综合利用野外地质、构造、岩浆、沉积学、地球化学、构造年代学和层析成像等最新成果,以期界定原特提斯域的南、北边界位置,确定原特提斯洋边界俯冲极性。集成分析结果表明,北界为古洛南-栾川缝合线(或宽坪缝合线)及其直至西昆仑的西延部分;南界为龙木措-双湖-昌宁-孟连缝合线。原特提斯洋北部在华北-阿拉善-塔里木陆块泥盆纪向南俯冲并与冈瓦纳大陆北缘拼合过程中,形成了一个巨型弯山构造,现保存在祁连-阿尔金-柴达木地区的中国中央造山带内。原特提斯洋南部分支也可能在泥盆纪闭合,使得包括羌北、若尔盖、扬子、华夏、布列亚-佳木斯等在内的大华南陆块、印支陆块等也向南俯冲与冈瓦纳北缘发生了聚合。  相似文献   

3.
雅鲁藏布江缝合带是新特提斯洋俯冲消亡的残余,记录了新特提斯洋打开—闭合的全过程。本文以雅鲁藏布江缝合带西段仲巴地区南侧的纳久混杂岩为研究对象,进行了详细的放射虫年代学,砂岩碎屑锆石U-Pb同位素年代学以及碎屑组分统计研究。我们的数据表明,纳久混杂岩中硅质岩含有大量保存较好的放射虫化石,包含Pseudodictyomitra carpatica带典型分子,根据放射虫时代组合确定其时代为早Barremian阶;混杂岩中砂岩岩块主要为岩屑砂岩,不同样品碎屑锆石得出的最大沉积年龄介于95~73 Ma之间。碎屑锆石U-Pb年龄源区分析表明,碎屑物质来自北侧的冈底斯岩浆弧和拉萨地体。纳久混杂岩南侧的砂岩沉积时代为早白垩世,碎屑锆石U-Pb年龄源区表明具有典型的特提斯喜马拉雅特征。我们的数据表明,纳久混杂岩基质时代为早白垩世,砂岩岩块时代为晚白垩世,与北侧的早白垩世蛇绿岩共同组成了白垩纪的增生楔,随着印度与欧亚大陆的碰撞仰冲到特提斯喜马拉雅之上。  相似文献   

4.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚并生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞以及碰撞如何使大陆变形的过程,是对全球关切的科学奥秘的探索。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。二十多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho面信息的技术瓶颈,揭露了陆-陆碰撞过程。本文在探测研究成果的基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂(而不是龙门山断裂)是扬子板块的西缘边界,高原腹地Moho面厚度薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,不仅沿雅鲁藏布江缝合带走向印度地壳俯冲行为存在东西变化,而且印度地壳向北行进到拉萨地体内部的位置也不同。在缝合带中部,研究显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程中发生物质的回返与构造叠置,这导致印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射以及近于平的Moho面都反映出亚洲板块南缘处于伸展构造环境。  相似文献   

5.
位于特提斯喜马拉雅北亚带的江孜地区古近纪甲查拉组角度不整合于晚白垩世宗卓组之上,系该地区最高(时代最晚)海相地层。运用岩石学和地球化学方法对其进行分析研究结果表明该组物源区主要为近源再旋回造山带,岩屑的母岩类型主要是岩浆弧成因的中性、中酸性安山质火山岩。新生代以前,特提斯喜马拉雅属于印度板块的被动大陆边缘,从特提斯喜马拉雅南亚带向北亚带显示了一种从浅水陆棚到深水盆地的变化,在侏罗-白垩纪时其陆源碎屑物主要是成熟度极高的石英砂岩,所以甲查拉组的碎屑物质只能来源于当时的冈底斯弧地区,所获有限的古水流证据也指示了这一点。从欧亚大陆侵蚀下来的碎屑物质被带到原印度大陆地区沉积,暗示该区的特提斯洋壳已经完全消失,印度与欧亚大陆在特提斯喜马拉雅中、东部产生了初始的陆-陆碰撞,其碰撞的启动时间为甲查拉组开始沉积的65 M a±。  相似文献   

6.
滇桂交界区印支期前陆褶皱冲断带   总被引:14,自引:2,他引:14       下载免费PDF全文
吴根耀 《地质科学》2001,36(1):64-71
最近发现的蛇绿岩指示中、越交界区发育一条古特提斯的地缝合线,分开了越北地块和华南次大陆。滇桂交界处的印支期前陆褶皱冲断带为古特提斯造山带提供了进一步的证据。本文讨论了冲断-推覆构造的特征,提出该地的古特提斯洋具复杂的大陆边缘,沿北西走向段先发生碰撞,之后沿北东东向段发生碰撞,北西向断裂则发生右行的走滑(或右行斜冲)活动。冲断作用是向北或北东扩展的,仰冲的增生杂岩可能掩埋了大部分磨拉石沉积,造成了磨拉石不发育的假象。  相似文献   

7.
东亚原特提斯洋(Ⅱ):早古生代微陆块亲缘性与聚合   总被引:2,自引:7,他引:2  
原特提斯洋内存在塔里木、中祁连、柴达木、扬子、华夏、印支、兰坪-思茅等诸多陆块/微陆块,多数陆块之间在早古生代晚期发育有蛇绿岩带或高压-超高压带。原特提斯域形成于从Rodinia裂解到Pangea超大陆集结期间,存在复杂的洋-陆格局和聚散过程。原特提斯洋不同陆块/微陆块属性和关系及其拼合过程是恢复重建Pangea超大陆聚合前构造背景的关键,但对其认识迄今还存在争论。因此,本文采用综合对比方法,以期建立原特提斯洋陆块/微陆块的亲缘性和海-陆格局,厘定原特提斯微陆块拼合时序与方式。结果表明,早古生代早期除华北陆块不具有亲冈瓦纳大陆的特征外,扬子、华夏、塔里木、柴达木、阿拉善、北秦岭-中祁连-中阿尔金、欧龙布鲁克、北羌塘、南羌塘、拉萨、兰坪-思茅、印支等陆块/微陆块都具有亲冈瓦纳的特征。在450~400Ma左右这一系列陆块/微陆块都向南俯冲-增生,并逐步拼合于冈瓦纳大陆北缘东段,原特提斯洋关闭,并形成了原潘吉亚(Proto-Pangea)超大陆;原潘吉亚于380Ma以后裂离出塔里木-华北陆块和大华南陆块,分别出现勉略洋和古特提斯洋,直到240~220Ma逐步向北聚合,形成最终的劳亚古陆,此时才形成潘吉亚超大陆。  相似文献   

8.
特提斯喜马拉雅白垩纪层序地层分析   总被引:6,自引:0,他引:6       下载免费PDF全文
白垩纪是新特提斯演化过程中一个极其重要的阶段,其沉积蕴涵着新特提斯早期演变的丰富信息。在对典型剖面进行层序地层分析的基础上,结合前人的研究成果,笔者分别对特提斯喜马拉雅沉积带南、北两亚带白垩系进行较为详细的露头层序地层学研究,在沉积南带识别出为24个三级层序、5个层序组(亚二级层序)、2个二级层序(中层序),在北亚带识别出22个三级层序、5个层序组(亚二级层序)、2个二级层序(中层序)。特提斯喜马拉雅早白垩世层序地层总体表现为海进的退积序列,反映了特提斯洋壳的扩张阶段;晚白垩世层序地层总体表现为海退的进积序列,反映了特提斯洋盆地持续收缩和长期海平面逐步下降的过程,应是洋壳俯冲阶段的产物。整个白垩纪显示出一次极其明显的海水进退旋回,是特提斯洋从扩张到收缩这一演化过程的客观反映。由对层序特征、沉积特征及古生物特征等的分析所得出的特提斯喜马拉雅在白垩纪的海水进退规程,与同期的全球海平面的变化基本一致。  相似文献   

9.
特提斯喜马拉雅前陆断褶带由近东西向展布的藏南拆离系主拆离带和洛扎、绒布-哲古两条断裂带及一系列倒转复式褶皱组成,是始喜马拉雅期印度板块与欧亚大陆发生大规模陆-陆碰撞,导致特提斯喜马拉雅前陆盆地发生大规模缩短、沉积盖层以藏南拆离系为底界自北向南大规模逆冲推覆、褶皱,以及新喜马拉雅期高喜马拉雅结晶岩系自北向南挤出导致藏南拆离系主拆离带和洛扎、哲古两条次级构造带上盘地层自南向北伸展的产物.特提斯喜马拉雅前陆断褶带内的锑金多金属矿床在空间上具有明显的分带性,自北向南依次构成沙拉岗-查拉普锑金成矿带、错美-隆子锑铅锌多金属成矿带和拉康-错那银铅锌成矿带,其间分别以绒布-哲古和洛扎两个次级断裂带为界.矿体主要受褶皱翼部近东西向层间破碎带和近南北向构造带控制,成矿类型为浅成低温热液型,成矿时代为新喜马拉雅期.成矿作用与新生代构造演化和新喜马拉雅期岩浆活动关系密切.在新喜马拉雅期高喜马拉雅结晶岩系向南挤出过程中,特提斯喜马拉雅前陆断褶带沿着始喜马拉雅期形成的逆冲推覆构造带发生自南向北伸展,诱发地壳部分熔融,形成的岩浆沿构造带侵位,并促使沿构造带下渗地下水循环对流.当这些循环的地下水与沿构造带上升的岩浆期后含矿热液混合时,成矿流体的物理化学条件发生改变,成矿物质沉淀形成沿褶皱翼部近东西向层间破碎带和近南北向构造带分布的似层状、脉状和透镜状锑金多金属矿床.  相似文献   

10.
青海省境内环绕柴达木盆地周边的金矿床十分发育,是中国金矿的重要产地,素有“金腰带”之称。通过对“青海金腰带”的区域地质、地球物理和地球化学特征分析,认为青海“金腰带”的形成主要受两期造山作用控制。加里东期—华力西期,柴达木陆块向北与欧龙布鲁克陆块碰撞,导致原特提斯洋发生闭合,形成柴北缘滩间山金矿田和赛坝沟金矿床;印支期,巴颜喀拉陆块向北与东昆仑陆块碰撞,导致古特提斯洋发生闭合,形成五龙沟、大场、沟里金矿田和满丈岗金矿床。综合前人研究成果,笔者提出该地区金矿床的形成与壳幔相互作用密切相关,幔源物质对金矿床的成矿流体及成矿物质均具有重要贡献,主要金矿床的时空分布也与基性–超基性岩相关。因此,基性–超基性岩发育的位置是在该地区寻找造山型金矿的有利地段。  相似文献   

11.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚和生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞,碰撞如何使大陆变形的过程,是全球关切的科学奥秘。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。20多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho清晰结构的技术瓶颈,揭露了陆陆碰撞过程。本文在探测研究成果基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂而不是龙门山断裂是扬子板块的西缘边界,高原腹地Moho 薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,印度地壳不仅沿雅鲁藏布江缝合带存在由西向东的俯冲角度变化,而且其向北行进到拉萨地体内部的位置也不同。在缝合带中部,显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程发生物质的回返与构造叠置,使印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射,以及近于平的Moho都反映出亚洲板块南缘的伸展构造环境。  相似文献   

12.
川西藏东板块构造体系及特提斯地质演化   总被引:5,自引:0,他引:5  
刘朝基 《地球学报》1995,16(2):121-134
川西藏东可划分为巴颜喀拉、羌塘和拉萨3个板块构造体系。每个体系由结合带、岛弧褶皱带、弧后盆地褶皱带和盆后隆起组成。它们是在晚二叠世冈瓦纳古陆和劳亚古陆沿巴塘拼合带碰撞拼合的基础上,自NE而SW经历了三叠纪巴颜喀拉板块构造体系的形成、株罗纪羌塘板块构造体系的形成和白垩纪拉萨板块构造体系的形成以及新生代以来陆-陆碰撞造山和高原隆升而逐渐形成的。  相似文献   

13.
西太平洋边缘构造特征及其演化   总被引:1,自引:1,他引:0       下载免费PDF全文
李学杰  王哲  姚永坚  高红芳  李波 《中国地质》2017,44(6):1102-1114
西太平洋边缘构造带是地球上规模最大最复杂的板块边界,以台湾和马鲁古海为界,自北往南大致可以分为3段。北段是典型的沟-弧-盆体系,千岛海盆、日本海盆及冲绳海槽均为典型的弧后扩张盆地。中段菲律宾岛弧构造带为双向俯冲带,构造复杂,新生代经历大的位移和重组,使得欧亚大陆边缘的南海、苏禄海和苏拉威西海成因存在很大的争议。南段新几内亚—所罗门构造带是太平洋板块、印度—澳大利亚及欧亚板块共同作用的结果,既有不同阶段的俯冲、碰撞,也有大规模的走滑与弧后的扩张,其间既有新扩张的海盆,又有正在俯冲消亡的海盆。台湾岛处于枢纽部位,欧亚板块在此被撕裂,南部欧亚大陆边缘南海洋壳沿马尼拉海沟俯冲于菲律宾岛弧之下,而北部菲律宾海洋壳沿琉球海沟俯冲欧亚大陆之下。马鲁古海是西太平洋板块边界又一转折点,马鲁古海板块往东下插于哈马黑拉之下,往西下插于桑义赫弧,形成反U形双向俯冲汇聚带,其洋壳板块已基本全部消失,致使哈马黑拉弧与桑义赫弧形成弧-弧碰撞。  相似文献   

14.
大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例   总被引:1,自引:0,他引:1  
大陆弧岩浆带位于汇聚板块的前缘,记录了洋陆俯冲过程和大陆地壳生长过程,是研究壳幔相互作用的天然实验室。越来越多的研究发现,大陆弧岩浆的生长与侵位并不是均一的、连续的过程,而是呈现阶段性、峰期性特征,即幕式岩浆作用。弧岩浆峰期与岩浆平静期相比,岩浆增生速率显著增强,易于发生岩浆聚集,继而形成大的岩基,如北美西部科迪勒拉造山带内华达岩基、半岛岩基等。藏南冈底斯岩浆带位于拉萨地体南缘,属于印度-亚洲碰撞带的上盘,其南侧与喜马拉雅地体以雅鲁藏布蛇绿岩带为界。冈底斯弧岩浆形成时代集中在240~50 Ma期间,其形成与演化与新特提斯洋壳岩石圈板片俯冲到拉萨地体之下密切相关。因此,对冈底斯弧型岩浆作用的研究,将很好地揭示大陆型弧岩浆的演化过程,继而反演洋-陆俯冲过程,以及壳幔相互作用过程。通过对冈底斯岩浆带岩浆岩锆石U-Pb及Lu-Hf同位素,以及弧前和前陆盆地碎屑锆石U-Pb和Lu-Hf同位素的收集和整理,结合已经发表的区域地质资料的总结,我们发现冈底斯弧型岩浆演化具有如下特点:1幕式侵位,岩浆峰期为100~80 Ma和65~40 Ma,中间为岩浆平静期;2峰期阶段岩浆聚集,形成巨大岩基;岩石同位素非常亏损,预示着地幔物质的显著参与;3在弧岩浆的峰期阶段,冈底斯地壳厚度有显著增加,说明弧岩浆的峰期侵位对地壳加厚有重大贡献。  相似文献   

15.
In the Lesser Caucasus and NE Anatolia, three domains are distinguished from south to north: (1) Gondwanian-derived continental terranes represented by the South Armenian Block (SAB) and the Tauride–Anatolide Platform (TAP), (2) scattered outcrops of Mesozoic ophiolites, obducted during the Upper Cretaceous times, marking the northern Neotethys suture, and (3) the Eurasian plate, represented by the Eastern Pontides and the Somkheto-Karabagh Arc. At several locations along the northern Neotethyan suture, slivers of preserved unmetamorphozed relics of now-disappeared Northern Neotethys oceanic domain (ophiolite bodies) are obducted over the northern edge of the passive SAB and TAP margins to the south. There is evidence for thrusting of the suture zone ophiolites towards the north; however, we ascribe this to retro-thrusting and accretion onto the active Eurasian margin during the latter stages of obduction. Geodynamic reconstructions of the Lesser Caucasus feature two north dipping subduction zones: (1) one under the Eurasian margin and (2) farther south, an intra-oceanic subduction leading to ophiolite emplacement above the northern margin of SAB. We extend our model for the Lesser Caucasus to NE Anatolia by proposing that the ophiolites of these zones originate from the same oceanic domain, emplaced during a common obduction event. This would correspond to the obduction of non-metamorphic oceanic domain along a lateral distance of more than 500?km and overthrust up to 80?km of passive continental margin. We infer that the missing volcanic arc, formed above the intra-oceanic subduction, was dragged under the obducting ophiolite through scaling by faulting and tectonic erosion. In this scenario part of the blueschists of Stepanavan, the garnet amphibolites of Amasia and the metamorphic arc complex of Erzincan correspond to this missing volcanic arc. Distal outcrops of this exceptional object were preserved from latter collision, concentrated along the suture zones.  相似文献   

16.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

17.
西南“三江”造山带大地构造相   总被引:6,自引:0,他引:6       下载免费PDF全文
西南“三江”造山带由多条缝合带及其间多个大小不等的中间陆块构成,其大地构造属性与划分方案历来受地学界关注与争论。本文以大地构造相理论为切入点,将西南“三江”造山带划分出11个一级及其若干二级大地构造相,包括俯冲、消减杂岩、仰冲等一级大地构造相以及与其相伴的后造山及走滑大地构造相。俯冲大地构造相类包括块体变质相、前陆褶冲相、前陆盆地相;消减杂岩大地构造相包括洋壳残片相、陆壳残片相、增生变质杂岩相、活化基底相、侵入岩相、上叠磨拉石相;仰冲板块大地构造相包括弧前盆地相、岛弧相、弧后及弧间盆地相。特提斯洋向北消减,使泛华夏大陆群各块体先拼接,其后弧后扩张、闭合、造山,从而形成了“三江”造山带“多缝合带”、“多陆体”特征。  相似文献   

18.
冈底斯带晚中生代构造演化模式一直存在争议。此次研究了中冈底斯带扎布耶茶卡北部区域则弄群火山岩的野外特 征和锆石U-Pb年龄。锆石U-Pb定年结果表明,扎布耶茶卡北部则弄群火山岩主要喷发于154.2~142.1 Ma。研究首次获得 晚侏罗世的则弄群火山岩年龄为154 Ma,比前人提出的则弄群火山岩浆活动起始时间(130 Ma) 提前了24 Ma,据此将则 弄群的时代定为晚侏罗世至早白垩世。根据研究获得的最新年代学数据,结合冈底斯带火山岩的前人研究资料,显示冈底 斯带中生代弧火山岩具有从南向北逐渐年轻的趋势。因此,最早期南冈底斯弧中生代火山岩可能与新特提斯洋板片北向俯 冲有关,晚侏罗世至早白垩世的中冈底斯带弧火山岩受到了新特提斯洋板片北向俯冲和班公湖-怒江洋板片南向俯冲的双 重影响,早白垩世中期的北冈底斯带弧火山岩则与班公湖-怒江洋板片的南向俯冲密切相关。研究成果为冈底斯带晚中生 代构造演化模式提供了火山岩方面的新证据。  相似文献   

19.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号