首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently in China, soil–cement is widely used to improve the soft ground in the highway construction engineering. Literature studies are mainly investigating the mechanical properties of the soil–cement, while its properties of the electrical resistivity are not well addressed. In this paper, the properties of the electrical resistivity of the reconstituted soil-cement and the in situ soil–cement columns are investigated. The test results show that the electrical resistivity of the soil–cement increases with the increase in the cement-mixing ratio and curing time, whereas it decreases with the increase in the water content, degree of saturation and water–cement ratio. A simple equation is proposed to predict the electrical resistivity of soil–cement under the condition of the specified curing time and water–cement ratio. It is found that the electrical resistivity has a good relationship with the unconfined compression strength and blow count of SPT. It is expected that the electrical resistivity method can be widely used for checking/controlling the quality of soil–cement in practice.  相似文献   

2.
The production and utilization of coal is based on well-proven and widely used technologies. Fly ash, a coal combustion byproduct, has potential to produce a composite material with controlled and superior properties. The major challenges with the production of fly ash are in its huge land coverage, adverse impact on environment etc. It puts pressure on the available land particularly in a densely populated country like India. In India the ash utilization percentage has not been very encouraging in spite of many attempts. Stabilization of fly ash is one of the methods to transfer the waste material into a safe construction material. This investigation is a step in that direction. This paper presents the results of an investigation on compressive strength and bearing ratio characteristics of surface coal mine overburden material and fly ash mixes stabilized with lime for coal mine haul road construction. Tests were performed with different percentages of lime (2, 3, 6 and 9%). The effects of lime content and curing period on the bearing ratio and tensile strength characteristics of the stabilized overburden and fly ash mixes are highlighted. Unconfined compressive strength test results cured for 7, 28 and 56 days are presented to develop correlation between different tensile strengths and unconfined compressive strength. Empirical models are developed to estimate bearing ratio and tensile strength of mine overburden–fly ash–quick lime mixtures from unconfined compressive strength test results.  相似文献   

3.
Knowledge on the stresses in shotcrete tunnel shells is of great importance, as to assess their safety against severe cracking or failure. Estimation of these stresses from 3D optical displacement measurements requires shotcrete material models, which may preferentially consider variations in the water–cement and aggregate–cement ratios. Therefore, we employ two representative volume elements within a continuum micromechanics framework: the first one relates to cement paste (with a spherical material phase representing cement clinker grains, needle-shaped hydrate phases with isotropically distributed spatial orientations, a spherical water phase, and a spherical air phase; all being in mutual contact), and the second one relates to shotcrete (with phases representing cement paste and aggregates, whereby aggregate inclusions are embedded into a matrix made up by cement paste). Elasticity homogenization follows self-consistent schemes (at the cement paste level) and Mori–Tanaka estimates (at the shotcrete level), and stress peaks in the hydrates related to quasi-brittle material failure are estimated by second-order phase averages derived from the RVE-related elastic energy. The latter permits upscaling from the hydrate strength to the shotcrete strength. Experimental data from resonant frequency tests, ultrasonics tests, adiabatic tests, uniaxial compression tests, and nanoindentation tests suggest that shotcrete elasticity and strength can be reasonably predicted from mixture- and hydration-independent elastic properties of aggregates, clinker, hydrates, water, and air, and from strength properties of hydrates. At the structural level, the micromechanics model, when combined with 3D displacement measurements, predicts that a decrease of the water–cement ratio increases the safety of the shotcrete tunnel shell.  相似文献   

4.
The following work aims at minimizing the environmental impact of the solid wastes (ash) that is produced after the utilization of the bituminous limestone in thermal power stations and/or retorting processes. The laboratory tests have been selected with respect to construction needs and possible post construction conditions. Utilization of the various types of ash in the production of lightweight concrete block has revealed optimum results. The compressive strength of various ash–glass sand mixes has ranged between 19 and 76 kg/cm2 at 28 days. The compressive strength of ash–tuff mixes has ranged between 54 and 63 kg/cm2 at 28 days. Ultra light mixtures using ash–polyester with a density of 0.88 kg/m3 and a compressive strength of 21 kg/cm2 at 28 days are produced at normal room curing temperature without the use of ordinary Portland cement. The high alkalinity of El-Lajjun ash is considered a disadvantage when utilized in normal concrete mixes for structural purposes. Ash only can be mixed with aggregates to produce lean concrete for blinding purposes for use in foundations.  相似文献   

5.
Eruptive products of the Shirataka volcano (0.9–0.7 Ma) in NE Japan are calc-alkaline andesite–dacite, and are divisible into six petrologic groups (G1–G6). Shirataka rocks possess mafic inclusions—basalt–basaltic andesite, except for G3 and G4. All rocks show mixing and mingling of the mafic and silicic end-members, with trends defined by hosts and inclusions divided into high-Cr and low-Cr types; both types coexist in G1, G2, and G5. Estimated mafic end-members are high-Cr (1120–1170°C, 48–51% SiO2, olv ± cpx ± plg) and low-Cr type magmas (49–52% SiO2, cpx ± plg) except for the Sr isotopic composition. In contrast, the silicic end-members of both types have similar petrologic features (790–840°C, 64–70% SiO2, hbl ± qtz ± px + plg). High-Cr type mafic and corresponding silicic end-members have lower 87Sr/86Sr ratios than the low-Cr ones in each group. The trace element model calculations suggest that the low-Cr type mafic end-member magma is produced through ca. 20% fractional crystallization (olv ± cpx ± plg) from the high-Cr type one with assimilation of granitoids (= 0.02–0.05). The silicic magmas are producible through <30% partial remelting of previously emplaced basaltic magma with assimilation of crustal components. The compositional difference between the low-K and medium-K basalts in the Shirataka volcano is mainly attributed to the different degrees of the effect of subduction derived fluid by dehydration of phlogopite. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The Pueblo Viejo deposit (production to 1996: 166 t Au, 760 t Ag) is located in the Dominican Republic on the Caribbean island of Hispaniola and ranks as one of the largest high-sulfidation/acid-sulfate epithermal deposits (reserves in 2007: 635 t Au, 3,648 t Ag). One of the advanced argillic ore bodies is cut by an inter-mineral andesite porphyry dike, which is altered to a retrograde chlorite–illite assemblage but overprinted by late-stage quartz–pyrite–sphalerite veins and associated low-grade Au, Ag, Zn, Cd, Hg, In, As, Se, and Te mineralization. The precise TIMS U–Pb age (109.6 ± 0.6 Ma) of the youngest zircon population in this dike confirms that the deposit is part of the Early Cretaceous Los Ranchos intra-oceanic island arc. Intrusion-related gold–sulfide mineralization took place during late andesite–dacite volcanism within a thick pile (>200 m) of carbonaceous sand- and siltstones deposited in a restricted marine basin. The high-level deposit was shielded from erosion after burial under a late Albian (109–100 Ma) ophiolite complex (8 km thick), which was in turn covered by the volcano-sedimentary successions (>4 km) of a Late Cretaceous–Early Tertiary calc-akaline magmatic arc. Estimates of stratigraphic thickness and published alunite, illite, and feldspar K-Ar ages and closure temperatures (alunite 270 ± 20°C, illite 260 ± 30°C, K-feldspar 150°C) indicate a burial depth of about 12 km at 80 Ma. During peak burial metamorphism (300°C and 300 MPa), the alteration assemblage kaolinite + quartz in the deposit dehydrated to pyrophyllite. Temperature–time relations imply that the Los Ranchos terrane then cooled at a rate of 3–4°C/Ma during slow uplift and erosion.  相似文献   

7.
The objective of this study was to evaluate the effect of fly ash amendment on the compression behavior of mine tailings. Natural and synthetic (i.e., laboratory prepared) mine tailings were used to assess the effects of tailings composition and tailings solids content on compressibility. Three types of off-specification fly ashes and Type I–II Portland cement were used as cementitious binders. Tailings-fly ash mixtures were prepared at solids content of 60–75% (water content = 33–67%), water-to-binder ratios of 2.5 and 5, and were cured for 0.1 days (2 h), 7, and 28 days. Bi-linear compression curves on semi-log plots were observed in most of the binder-amended tailings specimens. The break in slope on the compression curve was identified as the breaking stress, whereupon cementitious bonds were broken. The breaking stress increased with an increase in fly ash content, which was attributed to a lower water-to-binder ratio and void volume-to-binder volume ratio that produced more effective particle bonding. Breaking stress also increased with an increase in CaO content and CaO-to-SiO2 ratio of fly ash, which resulted in more effective bonding between particles. The effect of curing time on the breaking stress of fly ash amended specimens was characterized by (1) an increase in breaking stress via increase in curing time and cementitious bond formation or (2) a constant breaking stress with curing time due to competing mechanisms during loading. Specimens cured under a vertical stress showed an increase in breakings stress with applied load water removal prior to cementitious bond formation that reduced the water-to-binder ratio and led to more effective cementation.  相似文献   

8.
《Applied Geochemistry》2002,17(8):1143-1148
Finding means of utilising waste products is a very important field of research at the moment. In this study, fly ash, a waste product of the electricity and petrochemical industries, was investigated as a basic ingredient of a new geopolymeric material. The similarity of fly ash to natural pozzolans has encouraged the use of this waste product in the synthesis of geopolymers, which, in turn, can best be viewed as consisting of a polymeric Si–O–Al framework. Manufacturing of the geopolymers was conducted by mixing fly ash, kaolinite, sodium silicate solution, NaOH and water. The samples were cured at 40, 50, 60 and 70 °C for different time intervals (6, 24, 48 and 72 h). The optimum condition was found to be at 60 °C for a period of 48 h. Compressive strength measurements show a maximum strength of almost 8 MPa after 28 days. Infrared spectroscopic measurements were obtained of the samples after 7 and 28 days. X-ray diffraction measurements show quartz as the main constituent with the largest part of the geopolymer structure being amorphous and glass-like.  相似文献   

9.
The Homestake gold deposit, located in the Black Hills, South Dakota, USA, is one of the largest known hydrothermal gold deposits globally, with total mining production exceeding 40 Moz Au. Rhenium–osmium geochronology of ore-associated arsenopyrite and pyrrhotite was performed in an effort to delineate the timing of gold mineralization in relation to known tectonothermal events in the northern Black Hills. Arsenopyrite yields a rhenium–osmium (Re–Os) age of 1,736 ± 8 Ma (mean squared weighted deviation = 1.6), consistent with existing age constraints for gold mineralization, whereas Re–Os pyrrhotite data are highly scattered and do not yield a meaningful mineralization age. This is taken to indicate that the Re–Os arsenopyrite chronometer is robust to at least 400°C, whereas the Re–Os pyrrhotite chronometer is likely disturbed by temperatures of 300–350°C. The Re–Os arsenopyrite age and initial Os ratio (0.28 ± 0.15) are interpreted to indicate that gold was introduced at ca. 1,730 Ma, coincident with the onset of exhumation of crustal blocks and, possibly, the earliest intrusive phases of Harney Peak granite magmatism. New in situ U–Pb monazite analyses from an aplite dike in the east-central Black Hills indicate that granite magmatism was a protracted event, persisting until at least ca. 1,690 Ma.  相似文献   

10.
The Guarguaraz Complex in West Argentina formed during collision between the microplate Chilenia and South America. It is composed of neritic clastic metasediments with intercalations of metabasic and ultrabasic rocks of oceanic origin. Prograde garnet growth in metapelite and metabasite occurred between 1.2 GPa, 470°C and 1.4 GPa, 530°C, when the penetrative s2-foliation was formed. The average age of garnet crystallization of 390 ± 2 Ma (2σ) was determined from three four-point Lu–Hf mineral isochrones from metapelite and metabasite samples and represents the time of collision. Peak pressure conditions are followed by a decompression path with slight heating at 0.5 GPa, 560°C. Fluid release during decompression caused equilibration of mineral compositions at the rims and also aided Ar diffusion. An 40Ar/39Ar plateau age of white mica at 353 ± 1 Ma (1σ) indicates the time of cooling below 350–400°C. These temperatures were attained at pressures of 0.2–0.3 GPa, indicative of an average exhumation rate of ≥1 mm/a for the period 390–353 Ma. Late hydrous influx at 0.1–0.3 GPa caused pervasive growth of sericite and chlorite and reset the Ar/Ar ages of earlier coarse-grained white mica. At 284–295 Ma, the entire basement cooled below 280°C (fission track ages of zircon) after abundant post-collisional granitoid intrusion. The deeply buried epicontinental sedimentary rocks, the high peak pressure referring to a low metamorphic geotherm of 10–12°C/km, and the decompression/heating path are characteristics of material buried and exhumed within a (micro) continent–continent collisional setting.  相似文献   

11.
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.  相似文献   

12.
Deformation modulus of fly ash is one of the most important mechanical properties generally used in different design problems and also as an input parameter to sophisticated numerical techniques employed to assess the response of different structures resting on fly ash fill or embankment made of fly ash. Deformation modulus is usually expressed in terms of compressive strength. This paper presents the deformation modulus of fly ash modified with lime alone or in combination with gypsum at different strain levels. The values of deformation modulus obtained from both unconfined compression test and unconsolidated undrained triaxial test results are presented herein. The specimens for unconfined compression test and for undrained triaxial tests were cured up to 90 and 28 days, respectively. The effects of addition of lime (4–10%) and gypsum (0.5 and 1.0%) on the deformation modulus of class F fly ash are highlighted. With addition of lime and gypsum, the class F fly ash achieved the deformation modulus in the range of 190 MPa in UCS test and up to 300 MPa in triaxial test specimens tested under all round pressure of 0.4 MPa. Based on the present test results empirical relationships are developed to estimate deformation modulus of modified fly ash from unconfined compressive strength and relationships between initial tangent modulus and secant modulus at different strain levels are also developed.  相似文献   

13.
Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu–Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (∼400–550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (∼550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid–melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.  相似文献   

14.
Iron filling and iron filling–cement mixture were used to improve the shear strength characteristics of Irbid clayey soil. For this purpose, five types of Irbid clay soils were obtained and mixed with iron filling and iron filling–cement mixture at different percentages. Two sets of prepared samples were mixed with the admixture. The first set was prepared by mixing the soil samples with iron filling alone at 2.5, 5.0, 7.5, and 10% by dry weight of the soil. The second set was prepared by mixing with iron filling–cement mixture at equal ratio of the same percentages of the first set. An unconfined compression test was performed in this study to measure the shear strength properties of the soils. The test results showed that the increase in the percentages of the iron filling and iron filling–cement mixture up to 10% will result in increasing the maximum dry density of the soil and increase the unconfined compressive strength and the secant of modulus of elasticity of the clayey soil. Also, the addition of iron filling–cement mixture increased the unconfined compressive strength and secant modulus of elasticity of the clayey soil higher than the addition of iron filling alone.  相似文献   

15.
The Ferraria thermal water emerges at the sea level in the Ferraria lava delta (western edge of S. Miguel Island, Azores) with temperature of ca. 60°C and pH varying between 5.4 and 6.2. It is of sodium chloride type, resulting from ca. 50% seawater mixing with an acid brackish, at ≈100°C, denoting the presence of significant CO2(g) and the progress of water–rock interactions in open system conditions. The thermal Na–Cl water is strongly enriched with Sr and Mn and, comparatively, has low concentrations in Al, Fe and As. These elements are removed from the solution as critical conditions for the formation of several neo-formed mineral phases are gradually attained. Thermodynamic equilibrium calculations are consistent with this interpretation, showing that the thermal fluid can precipitate Fe3+-(hydr-)oxides, kaolinite and non-crystalline silica. Wells logging show fracture planes and pores fully/partly filled up with polyphase botryoidal aggregates mostly composed of goethite + ferrihydrite and displaying variable adsorbed contents of Si, P and As. These neo-formed phases result from the pristine fluid oxidation due to seawater mixing; its precipitation is easily affected by pH and redox variations of the brackish, due to volcanic gases pressure alterations, and fluid pressure or flow-velocity oscillation in the fractured aquifer.  相似文献   

16.
The three-dimensional spatial variations in the cooling pattern of the Toki granitic body, a zoned pluton in Central Japan, have been evaluated quantitatively by thermochronology using cooling age determination based on the different closure temperatures for target mineral species. The Toki granite has hornblende K–Ar ages of about 74.3 ± 3.7 Ma (N = 2; closure temperature of 510 ± 25°C), biotite K–Ar ages of 78.5 ± 3.9 to 59.7 ± 1.5 Ma (N = 33; 300 ± 50°C), and zircon fission-track ages of 75.6 ± 3.3 to 52.8 ± 2.6 Ma (N = 44; 240 ± 50°C). The spatial variation in the biotite K–Ar age is similar to that in the zircon fission-track age in samples collected from 11 boreholes and seven outcrop sites in the Toki granite, indicating that cooling was effectively from the roof and also from the northwest margin. This cooling pattern shows a strong correlation with the Alumina Saturation Index (ASI) distribution of the body. Larger ASI values correspond to earlier and more rapid cooling after emplacement and smaller value to slower cooling. Toki granite was effectively cooled from the peraluminous regions where assimilation of country sedimentary rock was most extensive.  相似文献   

17.
A combination of four thermochronometers [zircon fission track (ZFT), zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th–[Sm])/He (AHe) dating methods] applied to a valley to ridge transect is used to resolve the issues of metamorphic, exhumation and topographic evolution of the Nízke Tatry Mts. in the Western Carpathians. The ZFT ages of 132.1 ± 8.3, 155.1 ± 12.9, 146.8 ± 8.6 and 144.9 ± 11.0 Ma show that Variscan crystalline basement of the Nízke Tatry Mts. was heated to temperatures >210°C during the Mesozoic and experienced a low-grade Alpine metamorphic overprint. ZHe and AFT ages, clustering at ~55–40 and ~45–40 Ma, respectively, revealed a rapid Eocene cooling event, documenting erosional and/or tectonic exhumation related to the collapse of the Carpathian orogenic wedge. This is the first evidence that exhumation of crystalline cores in the Western Carpathians took place in the Eocene and not in the Cretaceous as traditionally believed. Bimodal AFT length distributions, Early Miocene AHe ages and thermal modelling results suggest that the samples were heated to temperatures of ~55–90°C during Oligocene–Miocene times. This thermal event may be related either to the Oligocene/Miocene sedimentary burial, or Miocene magmatic activity and increased heat flow. This finding supports the concept of thermal instability of the Carpathian crystalline bodies during the post-Eocene period.  相似文献   

18.
The Xihuashan tungsten deposit, Jiangxi province, China, is a world-class vein-type ore deposit hosted in Cambrian strata and Mesozoic granitic intrusions. There are two major sets of subparallel ore-bearing quartz veins. The ore mineral assemblage includes wolframite and molybdenite, with minor amounts of arsenopyrite, chalcopyrite, and pyrite. There are only two-phase aqueous-rich inclusions in wolframite but at least three major types of inclusions in quartz: two- or three-phase CO2-rich inclusions, two-phase pure CO2 inclusions and two-phase aqueous inclusions, indicating boiling. Fluid inclusions in wolframite have relatively higher homogenization temperatures and salinities (239–380°C, 3.8–13.7 wt.% NaCl equiv) compared with those in quartz (177–329°C, 0.9–8.1 wt.% NaCl equiv). These distinct differences suggest that those conventional microthermometric data from quartz are not adequate to explain the ore formation process. Enthalpy–salinity plot shows a linear relationship, implying mixing of different sources of fluids. Although boiling occurred during vein-type mineralization, it seems negligible for wolframite deposition. Mixing is the dominant mechanism of wolframite precipitation in Xihuashan. δ34S values of the sulfides range from −1.6 to +0.1‰, indicative of a magmatic source of sulfur. δ18O values of wolframite are relatively homogeneous, ranging from +4.8‰ to +6.3‰. Oxygen isotope modeling of boiling and mixing processes also indicates that mixing of two different fluids was an important mechanism in the precipitation of wolframite.  相似文献   

19.
In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c′ and φp′, are relevant to the binder content.  相似文献   

20.
垃圾焚烧飞灰水泥固化体强度稳定性研究   总被引:1,自引:0,他引:1  
针对垃圾焚烧飞灰安全处置技术要求,采用水泥对其进行固化、稳定化处理,研究了不同水泥添加量、不同养护时间和渗沥液浸泡时间对固化体无侧限抗压强度及破坏特性的影响,并对垃圾渗沥液的侵蚀机制进行了分析。结果表明:当水泥添加量小于5%,养护时间小于3 d时,飞灰固化体在渗沥液浸泡下迅速解体,垃圾渗沥液的侵蚀对飞灰固化体的强度有较大的影响,浸泡后的固化体呈现出明显的应变软化特征,而未经浸泡的固化体的强度增长符合y=a[1-exp(-bt)]模式。随着水泥添加量及养护时间的增加,飞灰固化体无侧限抗压强度增加,破坏应变减小,而随着浸泡时间的增加,飞灰固化体的无侧限抗压强度先增大后减小,转折点大约在5~7 d,破坏应变近似呈线性增大。渗沥液对飞灰固化体的侵蚀主要是其成分抑制了固化体水化反应和破坏了水化产物。研究成果可为垃圾焚烧飞灰的安全处置技术提供理论依据和参数支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号