首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
鄂尔多斯盆地东南部中生界地层节理发育特征与古应力场   总被引:3,自引:0,他引:3  
鄂尔多斯盆地东南部中生代地层中发育有六组节理(E-W、N-S、ENE-WSW、NNW-SSE、WNW-ESE、NNE-SSW),并且构成三期的正交节理系统(E-W与N-S、ENE-WSW与NNW-SSE、WNW-ESE与NNE-SSW).三期正交节理系统形成的先后期次为:E-W向和N-S向两组节理最早形成,WNW-ESE向和NNE-SSW向两组节理为第二期形成,ENE-WSW向和NNW-SSE向两组节理则最晚形成.E-W向、N-S向和ENE-WSW向三组节理的节理间距指数(FSI)分析结果表明,节理间距的发育程度除了受岩层厚度控制外,还受区域应力场的控制.E-W向、N-S向和ENE-WSW向三组节理的节理间距率(FSR)值分布范围指示不同组节理在区域上发育程度具有差异性.此外,E-W向的优势节理组的FSR值有超过间距与层厚比值的临界值,而非优势组的SN向节理的FSR值则全部小于临界值,表明E-W向和N-S向两组节理组成最早一期的正交节理系统.盆内中生代地层中的三期正交节理系统,所对应的古应力场分别为:(1)晚侏罗世盆地处在近E-W向的挤压环境下,形成了第一期正交节理系统,为E-W向和N-S向两组节理;应力来源于古太平洋板块向欧亚板块俯冲所产生的NW-SE向的挤压分量.(2)晚白垩世时,来自于古太平洋板块俯冲产生的NW-SE向挤压应力形成了第二期正交节理系统的WNW-ESE向和NNE-SSW向两组节理.(3)晚白垩世末至新生代,印度板块向欧亚板块下的俯冲产生NE-SW向的远程挤压应力,形成第三期正交节理系统的ENE-WSW向和NNW-SSE向两组节理.  相似文献   

2.
This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India–Seychelles rifting during Late Cretaceous–Early Paleocene, was studied, and the paleostress tensors were deduced. Near N–S trending shear zones, lineaments, and faults were already reported without significant detail. An E–W extension was envisaged by the previous workers to explain the India–Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N–S brittle shear zones and also those faults (sub-vertical, ~NE–SW/~NW–SE, and few ~N–S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N–S to ~NE–SW/~NW–SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW–SE/NE–SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N–S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N–S extension is put forward that refutes the popular view of E–W India–Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE–SW and ~NW–SE, with some ~N–S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of the DLIP erupted. Further studies of magma-rich passive margins with respect to timing and architecture of deformation and emplacement of volcanics are required.  相似文献   

3.
 The analysis of the fractures in the marble forming sierras Blanca and Mijas (southern Spain), with faults of markedly different sizes and joints measured at 21 stations, demonstrate the presence of two principal directions of fractures (NNW-SSE and NNE-SSW). Other major directions of fractures, although less distinct, are N100E, N120E and N60E. The form of the karstic cavities known in these sierras was influenced by fractures, fundamentally NNW-SSE and, to a lesser extent, NNE-SSW, as well as by the mineralogical composition of the marble. All the cavities known are located in blue limestone marble and appear to have formed by the end of the Miocene, principally during the Pliocene and the Pleistocene. From a hydrogeological standpoint, Sierra Blanca and Sierra Mijas constitute a unit limited by faults oriented ENE-WSW, NNW-SSE and NNE-SSW. Specifically, fractures of the latter two directions influence the compartmentalization and the hydrogeological functioning of the unit. According to the degree of fracturing and/or karstification, three basic types (apart from intermediate situations) of aquiferous behavior have been distinguished: karstic aquifer, fissured aquifer, and porous aquifer. Received: 2 October 1995 · Accepted: 29 May 1996  相似文献   

4.
Ras Banas Peninsula is a large triangular tract of land jutting out into the Red Sea. It extends about 40 km eastward out of the general trend of the Red Sea coast of Egypt, covering an area of about 600 km2. Three sandy spits are jutting out from the main body of the peninsula into the Red Sea, possibly representing relics of structural trends, two of which are located at the western part and the third one is extending from the eastern edge forming a further seaward extension of the main body. A series of isometric and contour maps of the whole area under investigation are provided in digitized visual form of geomorphologic features, landforms and slope configuration. According to difference in relief, the study area can be subdivided into three topographic divisions, namely coastal plain (<50 m), medium-height land (50–150 m) and hinterland (>150 m). Drainage and lineament maps of the drainage networks were prepared from the topographic map and satellite images of the area. The prepared lineament map shows four main trends that control the configuration of the drainage system in the study area. These trends are Aqaba trend (NE–SW to NNE–SSW), Red Sea trend (NW–SE to NNW–SSE), Nubian trend (N–S), and Tethyan trend (E–W). It is clear that the structural trends, lithology and general slope are the main controls of developing parallel and dendritic drainage patterns in the area. Both geomorphology and drainage system configuration have great influences on the land use and natural hazards affecting the peninsula especially torrential floods and sea level fluctuations.  相似文献   

5.
Abstract

The South Iceland Seismic Zone (SISZ) is located at the junction of three rift segments in southwestern Iceland. The presence of different types of faulting and of differently orientated subgroups in Upper Pliocene to Holocene formations indicate polyphase tectonism. We measured 736 minor faults at 25 sites. Two types of relationships between stress regimes are represented. The first type, named IDS (inhomogeneous data set), is characterized by the presence of two types of fault mechanisms, normal and strike-slip, consistent with a single direction of extension. The second type, named OSR (opposite stress regimes), is characterized by the presence of perpendicular directions of extensions for a single type (normal or strike-slip) of faulting. Because of contradictory chronological criteria, we infer that the OSR alternated during the brittle tectonic activity of the SISZ. Two stress regimes, primary and secondary, are characterized by directions of extension NW-SE and NE-SW, respectively. The general fracture pattern characterized for the primary stress regime in the SISZ includes NNE-SSW trending right-lateral strike-slip faults, conjugate ENE-WSW trending left-lateral faults and NE-SW normal faults. This distribution is quite consistent with a Riedel- type model of fault pattern in a left-lateral shear zone. The stress states characterized based on analysis of both the earthquake focal mechanisms and the recent faulting sow great similarity in terms of stress directions. The main difference is the larger ratio of strike-slip motions representing 71% of the total population in the case of earthquake focal mechanisms, whereas for the whole set of faults the proportion of strike-slip faulting was 50 %. We explain that a témpora evolution of the tectonic regime in the SISZ region, accompanied by a gradual change in stress field, starts with rift-type pure extension and progressively leads to development of preferentially strike-slip structures in the kinematic context of left- lateral transform motion. © Elsevier, Paris  相似文献   

6.
Freddy Corredor 《Tectonophysics》2003,372(3-4):147-166
Remote sensing and field studies of several extensional basins along the northern margin of the Gulf of Aden in Yemen show that Oligocene–Miocene syn-rift extension trends N20°E on average, in agreement with the E–W to N120°E strike of main rift-related normal faults, but oblique to the main trend of the Gulf (N70°E). These faults show a systematic reactivation under a 160°E extensional stress that we interpret also as syn-rift. The occurrence of these two successive phases of extension over more than 1000 km along the continental margin suggests a common origin linked to the rifting process. After discussing other possible mechanisms such as a change in plate motion, far-field effects of Arabia–Eurasia collision, and stress rotations in transfer zones, we present a working hypothesis that relates the 160°E extension to the westward propagation since about 20 Ma of the N70°E-trending, obliquely spreading, Gulf of Aden oceanic rift. The late 160°E extension, perpendicular to the direction of rift propagation, could result from crack-induced extension associated with the strain localization that characterises the rift-to-drift transition.  相似文献   

7.
The Mesoproterozoic Khariar basin, to the SE of Chhattisgarh basin, comprises 1000 m thick arenaceous-argillaceous sediments. For the first time, a multidisciplinary approach has been made to the integrate interpreted satellite imagery, aero-magnetic and aero-radiometric data with available ground exploration data sets with an objective to understand structural fabric and to establish various parameters for unconformity related uranium mineralization in the environs of Khariar basin. Total Magnetic Intensity (TMI) anomaly image has been useful to mark major faults (ENE-WSW), magnetic bodies and overall basement characteristics. Combination of first vertical derivative (1VD) and tilt derivative magnetic images brought out presence of NW-SE magnetic linear (dominant) with minor ENE-WSW and NNE-SSW trends. Basic dykes and quartz veins are the surface manifestations of NW-SE trend in basement. Radially averaged power spectrum indicates the approximate basement configuration. Enhanced Thematic Mapper satellite imagery (Landsat ETM+) interpretation has shown lineaments along NW-SE, NNE-SSW, ENE-WSW and ENW-WSE directions. These observations are corroborated by interpreted results of magnetic data. Analysis of both results indicate NW-SE and ENE-WSW trends as post depositional. Aero-radiometric images (U, Th, K and ternary U-Th-K) show overall radio-elemental distribution for various litho-units. Besides, Th and K images along with interpreted ETM+ satellite imagery (RGB: 432/752/751) are useful to map small outliers and to modify basement-sediment contact. Geochemical data from basement rocks around Khariar basin suggests the younger Bundeli granitoids and its equivalents are good source of uranium in the western margin. Presence of labile uranium is inferred from higher concentration of uranium in water samples. The Airborne gamma-ray spectrometry (AGRS) and hydro-geochemical anomalies fall along fault zones and intersection of fault zones. The western and southern margin of Khariar basin are also characterized by presence of paleosol at unconformity, which are favorable factors for unconformity type uranium mineralization. Based on the present study, part of western and southern margin emerge as potential target areas for further exploration of uranium.  相似文献   

8.
The Campo de Dal??as, located between the central and eastern Betic Cordilleras, shows an evolution determined by the overprinting of two main stress fields since Pliocene times. The first of these develops hybrid and tensional joint sets up to Pleistocene (100 000 yr) and is characterized by NNW–SSE horizontal trend of compression and an ENE–WSW horizontal extension. The second stress field has prolate to triaxial extensional ellipsoids, also with ENE–WSW horizontal extension, and continues to be active today. The most recent stresses produce the reactivation of previous joints as faults whose trends are comprised mainly from N120°E to N170°E and have a normal and transtensional regime, with dextral or sinistral components. The palaeostress evolution of this region is similar to that undergone by other basins of the Eastern Betic Cordilleras, although the Pliocene–Pleistocene transcurrent deformations in the Campo de Dal??as only develop joints and not strike-slip faults.  相似文献   

9.
Paleostress orientations were calculated from fault populations at 24 sites along the SW–NE segment and five sites along the E–W, Yasin segment of the Karakoram–Kohistan Suture Zone in NW Pakistan. They demonstrate the importance of combined thrusting and strike-slip faulting. However, several paleostress tensor directions are distinguished: a dominant NW–SE compression and a minor E–W compression are compatible with the recent evolution of this part of the Hindu Kush. From the lack of both systematic overprinting-relationships and spatial trend (the two tensors were obtained at different locations) we conclude that in each location any of these two shortening directions can dominate. Heterogeneously distributed extension is found in some places and is likely due to local conditions. These paleostress tensors substantiate a transpressional regime due to far-field Himalayan compression and document the long-term background of the seismogenic deformation in this region.  相似文献   

10.
The Bhuj region, Kutch, India, is included in the highly seismic zonation map of India. The Kutch is a rift basin and so far has experienced three major earthquakes that are due to reverse fault mechanism, which in turn have been ascribed to compressive stresses. Origin of these stresses is considered to be due to north–south convergence of the Indian Plate with the Tibetan plate, and this has placed the entire Indian Plate under the compressive stress regime. Analysis of the stress pattern in the Bhuj region, therefore, has been carried out by extracting lineaments with the help of remote sensing data for the pre- and post-earthquake periods of 26 January 2001 earthquake. For this purpose, the area has been segmented into four sectors. The lineament frequency and the percent frequency from each sector and also for the whole area have been worked out. Resolution of stress on the principle of triaxial ellipsoid has been worked out for each sector and also for the whole area. There results a temporal change in the stress pattern in each sector and also for the whole area. However, the direction of horizontal maximum compressive stress for the whole area appears to be in N 10°E in the pre-earthquake period that has changed to N 10°W in the post-earthquake period. Thus, temporal change in the horizontal maximum compressive stress direction as N 23°E, inferred by Gowd et al. (J Geophy Res 97:11879–11888, 1992) to N 10°E prior to and N 10°W in the post-earthquake period, as inferred from lineament analysis and near parallelism of the lineament maxima with that of the North Kathiawar Fault and the Chambal Jamnagar Lineament along with the longer axis of the isoseismals of the Bhuj 2001 earthquake indicates a modification in the structural fabric of the region as well as a possibility of development of a major plane of weakness.  相似文献   

11.
Abstract

A detailed analysis of brittle deformations in the Saharian platform of southern Tunisia is based on studies of fault-slip data sets and joint sets. It allows reconstruction of the Mesozoic paleostress evolution. During the Permo-Triassic, N-S extensions occurred with high late Permian subsidence rates. During the Norian, strike-slip movements reactivated former normal faults. During the Jurassic and the Cretaceous a succession of extensional events was characterized by : (1) a N-S extension which dominated from late Triassic to early Aptian. We relate this extension to the Africa-Eurasia divergence; (2) a ENE-WSW extension during the Cenomanian. We relate this extension to the opening of «he African basins ; (3) a NE-SW Senonian extension that continued during the Cenozoic in the Jeffara and in the Gabes Gulf, during the further evolution of the northern African margin. The various compressional trends recorded in the platform are attributed to Cenozoic events.  相似文献   

12.
A detailed analysis of bathymetry and magnetic data of Visakhapatnam-Paradip shelf, east coast of India revealed three major structural lineaments over the shelf/slope of the area. Models derived from the anomalies associated with the trends indicate that trend A represents horst and graben type continental basement while trend B is due to a series of dyke intrusions. Trend C off Chilka lake forms the northward extension of 85°E lineation from deep sea Bengal Fan. A two stage evolution of the eastern continental margin of India has been inferred from the study of this part of the margin, viz., the rift stage evidenced by dyke intrusions of reverse polarity located within the inner part of the shelf and post-rift stage characterized by vertical tectonics in the form of a horst and graben type continental basement. The hotspot related aseismic 85°E ridge further complicated the tectonics of this part of the area.  相似文献   

13.
Ozone trends in the Upper Troposphere and Lower Stratosphere over the Indian region are investigated using three satellite data sets namely Halogen Occultation Experiment (1993–2005), Stratospheric Aerosol and Gas Experiment (1993–2005) II, and Aura Microwave Limb Sounder (MLS, 2005–2011). Estimated ozone trends using multi-variate regression analysis are compared with trends at two Indian ozonesonde stations (Delhi, 28°N, 77°E and Pune, 18°N, 73°E), and a 3-D Chemical Transport Model (CTM, SLIMCAT) for the 1993–2005 time period. Overall, all the observational data sets and model simulations indicate significant increasing trend in the upper troposphere (0–2.5 %/year). In the lower stratosphere, estimated trends are slightly positive up to 30 mb and are negative between 30 and 10 mb. Increasing trends in the upper troposphere is probably due to increasing trends in the tropospheric ozone precursor gases (e.g. CO, NO x , NMHCs). Here, we argue that these contrasting ozone-trend profiles might be partially responsible for insignificant long-term trends in the tropical total column ozone. On seasonal scale, positive trends are observed during all the seasons in the upper troposphere while structure of trend profile varies in lower stratosphere. Seasonal variations of ozone trends and its linkages with stratospheric intrusions and increasing trends in lightning flashes in the troposphere are also discussed.  相似文献   

14.
The Penola Trough is an intensely faulted northwest – southeast-trending half-graben structure. It is bound to the south by the major listric Hungerford/Kalangadoo Fault system. Several large prominent faults observed in the Penola Trough show offset of basement at depth. These basement-rooted faults have exerted significant controls on the geometry of smaller intra-rift faults throughout the entire structural history of the area. Faulting of the basement was initiated during the initial rift event of the Late Jurassic – Early Cretaceous. Faulting first propagated through a pre-existing basement fabric oblique to the north – south extension direction prevalent during this time. This resulted in the formation of the Hungerford/Kalangadoo and St George Faults with a northwest – southeast and north-northeast – south-southwest trend, respectively. A series of east – west-trending basement faults subsequently initiated perpendicular to the north – south extension direction as extensional strain increased in magnitude. Significant displacement along these basement-rooted faults throughout the initial rift event was associated with the formation of a complex set of intra-rift faults. These intra-rift faults exhibit a broadly east – west orientation consistent with the interpreted north – south extensional direction. However, this east – west orientation locally deviates to a more northwest – southeast direction near the oblique-trending St George Fault, attributed to stress perturbation effects. Many of the intra-rift faults die out prior to the end of the Early Cretaceous initial rift event while displacement on basement faults continued throughout. Faulting activity during the Late Cretaceous post-rift fault event was almost exclusively localised onto basement faults, despite a significant change in extension direction to northeast – southwest. A high-density, en échelon array of northwest – southeast-trending fault segments formed directly above the St George Fault and the large east – west-trending basement faults contemporaneously reactivated. Seismic variance data show that post-rift fault segments that are hard-linked to the St George Fault at depth have propagated through near-surface units. Non-basement-linked post-rift fault segments that lie away from the St George basement have not. This suggests that recent fault activity has continued to occur preferentially along basement faults up to relatively recent times, which has significant implications for fault seal integrity in the area. This is empirically validated by our structural analysis of fault-dependent hydrocarbon traps in the area, which shows that partially breached or breached hydrocarbon columns are associated with basement faults, whereas unbreached hydrocarbon columns are not.  相似文献   

15.
《Geodinamica Acta》1999,12(5):303-319
The South Iceland Seismic Zone (SISZ) is located at the junction of three rift segments in southwestern Iceland. The presence of different types of faulting and of differently orientated subgroups in Upper Pliocene to Holocene formations indicate polyphase tectonism. We measured 736 minor faults at 25 sites. Two types of relationships between stress regimes are represented. The first type, named IDS (inhomogeneous data set), is characterized by the presence of two types of fault mechanisms, normal and strike-slip, consistent with a single direction of extension. The second type, named OSR (opposite stress regimes), is characterized by the presence of perpendicular directions of extensions for a single type (normal or strike-slip) of faulting. Because of contradictory chronological criteria, we infer that the OSR alternated during the brittle tectonic activity of the SISZ. Two stress regimes, primary and secondary, are characterized by directions of extension NW-SE and NE-SW, respectively. The general fracture pattern characterized for the primary stress regime in the SISZ includes NNE-SSW trending right-lateral strike-slip faults, conjugate ENE-WSW trending left-lateral faults and NE-SW normal faults. This distribution is quite consistent with a Riedeltype model of fault pattern in a left-lateral shear zone. The stress states characterized based on analysis of both the earthquake focal mechanisms and the recent faulting show great similarity in terms of stress directions. The main difference is the larger ratio of strike-slip motions representing 71 % of the total population in the case of earthquake focal mechanisms, whereas for the whole set of faults the proportion of strike-slip faulting was 50 %. We explain that a temporal evolution of the tectonic regime in the SISZ region, accompanied by a gradual change in stress field, starts with rift-type pure extension and progressively leads to development of preferentially strike-slip structures in the kinematic context of leftlateral transform motion.  相似文献   

16.
1 Introduction A series of studies have indicated that there were two extensional phases in the North Sea (Fig. 1). An earlier period (Late Permian-Early Triassic) of rifting occurred widely in these areas, with predominant extension direction of W-E (F?rseth, 1996; F?rseth et al., 1997). In contrast to the widely distributed Permo-Triassic extension, Jurassic extension in the North Sea were generally much more localized into the three main rift arms (Fig. 1): the Viking Graben, Moray…  相似文献   

17.
The western part of Yemen is largely covered by Tertiary volcanics and is bounded by volcanic margins to the west (Red Sea) and the south (Gulf of Aden). The Oligo–Miocene evolution of Yemen results from the interaction between the emplacement of the Afar plume, the opening of the Red Sea, and the westward propagation of the Gulf of Aden. Structural and microtectonic analyses of fault slip data collected in the field reveal that the volcanic margins of Yemen are affected by three main extensional tectonic events. The chronological order of these events is as follows: first E–W extension was associated with the emplacement of volcanic traps of Yemen, then NE–SW extension was related to the Red Sea rifting, and finally, the volcanic margin was submitted to N160°E extension, perpendicular to the overall trend of the Gulf of Aden, which we interpret as induced by the westward propagation of the oceanic ridge of the Gulf of Aden.  相似文献   

18.
Remnants of rhyolite lava-dome and of alkaline microgranite extrusions emerge, as inselbergs, in the alluvial plain, south of Lake Chad. The peralkaline, arfvedsonite- and acmite-bearing rhyolites are determined as pantellerites. They can be related to a tectonomagmatic stage, dated of the Late Cretaceous, of the western central Africa rift system. They may constitute the NNE extension of a N50° to 30° elongated succession of small alkaline complexes, from the Gulf of Guinea to the North-Cameroon, which initiated the magmatic activity of the Cameroon Line. To cite this article: J.-P. Vicat et al., C. R. Geoscience 334 (2002) 885–891.  相似文献   

19.
Crustal deformation in front of an indenter is often affected by the indenter’s geometry, rheology, and motion path. In this context, the kinematics of the Jaufen- and Passeier faults have been studied by carrying out paleostress analysis in combination with crustal-scale analogue modelling to infer (1) their relationship during indentation of the Adriatic plate and (2) their sensitivity in terms of fault kinematics to the geometry and motion path of Adria. The field study reveals mylonites along the Jaufen fault, which formed under lower greenschist facies conditions and is associated with top-to-the-west/northwest shear with a northern block down component. In addition, a brittle reactivation of the Jaufen shear zone under NNW–SSE to NW–SE compressional and ENE–WSW tensional stress conditions was deduced from paleostress analysis. The inferred shortening direction is consistent with fission track ages portraying Neogene exhumation of the Meran-Mauls basement south of the fault. Along the Passeier fault, deformation was only brittle to semi-ductile and paleostress tensors record that the fault was subjected to E–W extension along its northern segment varying into NW–SE compression and sinistral transpression along its southern segment. In the performed analogue experiments, a rigid, triangular shaped indenter was pushed into a sand pile resulting in the formation of a Passeier-like fault sprouting from the indenter’s tip. These kinds of north-trending tip faults formed in all experiments with shortening directions towards the NW, N, or NE. Consequently, we argue that the formation of the Passeier fault strongly corresponds to the outline of the Adriatic indenter and was only little affected by the indenter’s motion path due to induced strain partitioning in front of the different indenter segments. The associated fault kinematics along the Passeier fault including both E–W extension and NNW to NW shortening, however, is most consistent with a northward advancing Adriatic indenter.  相似文献   

20.
库车坳陷脆性构造序列及其对构造古应力的指示   总被引:3,自引:0,他引:3  
在对野外脆性构造(主要是节理和断层) 大量观测的基础上, 根据它们与应力的关系, 讨论了库车坳陷白垩纪末期以来的古构造应力时空变化.结果表明, 在库车坳陷脆性构造中, 早期隆升作用形成的主要发育在中生界的NEE-SWW向系统节理被晚期同构造期的在中生界与上第三系均发育的NNW-SSE向和NW-SE向节理切割并改造, 这是对区域上构造应力场在进入新近纪时从弱伸展变化到强烈挤压这一过程的响应.基于断层滑动分析的古应力反演结果显示, 此时盆山边界处以近N-S向伸展应力状态占主导, 而坳陷内部则表现为近N-S向和NW-SE向挤压应力状态.说明在进入新近纪后, 最大主应力(σ1) 方向从垂向变成水平, 应力场发生了转变.此后的天山快速垂向隆升是库车坳陷北缘和内部应力状态存在差异的原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号