首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

2.
Abstract. Denggezhuang gold deposit is an epithermal gold‐quartz vein deposit in northern Muru gold belt, eastern Shandong, China. The deposit occurs in the NNE‐striking faults within the Mesozoic granite. The deposit consists of four major veins with a general NNE‐strike. Based on crosscutting relationships and mineral parageneses, the veins appear to have been formed during the same mineralization epochs, and are further divided into three stages: (1) massive barren quartz veins; (2) quartz‐sulfides veins; (3) late, pure quartz or calcite veinlets. Most gold mineralization is associated with the second stage. The early stage is characterized by quartz, and small amounts of ore minerals (pyrite), the second stage is characterized by large amounts of ore minerals. Fluid inclusions in vein quartz contain C‐H‐O fluids of variable compositions. Three main types of fluid inclusions are recognized at room temperature: type I, two‐phase, aqueous vapor and an aqueous liquid phase (L+V); type II, aqueous‐carbonic inclusions, a CC2‐liquid with/without vapor and aqueous liquid (LCO2+VCC2+Laq.); type III, mono‐phase aqueous liquid (Laq.). Data from fluid inclusion distribution, microthermometry, and gas analysis indicate that fluids associated with Au mineralized quartz veins (stage 2) have moderate salinity ranging from 1.91 to 16.43 wt% NaCl equivalent (modeled salinity around 8–10 wt% NaCl equiv.). These veins formatted at temperatures from 80d? to 280d?C. Fluids associated with barren quartz veins (stage 3) have a low salinity of about 1.91 to 2.57 wt% NaCl equivalent and lower temperature. There is evidence of fluid immiscibility and boiling in ore‐forming stages. Stable isotope analyses of quartz indicate that the veins were deposited by waters with δO and δD values ranging from those of magmatic water to typical meteoric water. The gold metallogenesis of Muru gold belt has no relationship with the granite, and formed during the late stage of the crust thinning of North China.  相似文献   

3.
The Pennaichaung and Yetkanzintaung W-Sn Prospects are located in Tavoy Township, Tennasserim Division, southern Burma. The W-Sn mineralization at the Pennaichaung is closely related with a small, satellitic granitoid pluton of presumably Late Mesozoic age, which intruded the metaclastic rocks of Mergui Group (mostly Carboniferous). The mineralized quartz veins at the Pennaichaung penetrated the granitoid-metasedimentary rocks contact. In contrary to the Pennaichaung deposit, the W-Sn veins at the Yetkanzintaung are exclusively in the metasedimentary rocks of slates and quartzites of Margui Group. Mineralized quartz veins in the Pennaichaung area trend NNE-SSW, NW-SE and NE-SW with a maximum thickness of 30 cm, but only quartz veins trending NNE-SSW are found to be productive and contained economically workable wolframite and cassiterite. Majority of the mineralized quartz veins in the Yetkanzintaung area trend approximately N-S with easterly dip of 50°–70°. The thickness of the ore veins in the Yetkanzintaung area are thinner than those of the Pennaichaung and range from 1 cm to 20 cm with an average width of 5 cm. Fluid inclusion studies of the quartz from the ore veins cutting the granitoid in the Pennaichaung area have yielded a filling temperature range of 170°–270°C with a maximum mode of 220°C, while quartz crystals from the ore veins in the nearby metasedimentary rocks gave a filling temperature range of 140°–220°C with a maximum mode of 160°C. Hence, the Pennaichaung deposit was thought to have emplaced under a filling temperature range of 140°–270°C. A similar low filling temperature range was recorded for the Yetkanzintaung deposit. Quartz from the Yetkanzintaung ore veins have yielded filling temperatures of 200°–240°C, whereas the fluorites associated with the mineralized quartz veins gave a temperature range of 140°–160°C. Limited freezing runs indicate a salinity of less than 5 NaCl equivalent weight percent for inclusions in quartz from both orebodies. No fluid inclusion evidence of boiling of ore fluids nor presence of liquid CO2 was observed in this study. Thus, the ore fluids responsible for the W-Sn mineralization at the Pennaichaung and Yetkanzintaung areas were of low temperature, diluted, CO2-deficient, NaCl brines.  相似文献   

4.
The Falun gold quartz vein mineralization is located ca 230 km NW of Stockholm, Sweden, within the Early Proterozoic volcano-sedimentary sequence of Bergslagen. The mineralization consists of a system with subparallel quartz veins that crosscut the alteration zone to the Falun massive sulphide deposit. Early barren and late gold-bearing quartz veins follow tectonic structures postdating the formation of the massive sulphide ore. Both generations of veins are epigenetic to the massive sulphide ore and were formed by hydrothermal processes. Fluid inclusion study of the gold-bearing quartz veins indicates a low-moderately saline fluid (0.3 to 17.4 equiv wt% NaCl). Heterogeneous trapping is indicated by coexisting inclusions showing a variable CO2 content from 100% CO2 ± CH4 to 100% aqueous fluid. Temperatures of total homogenization also show a wide spread from 116–350°C with a slightly bimodal distribution with peaks at ca 180°C and 280°C. MeasuredδD values — 69 to — 63%0 (SMOW), of inclusion fluid and calculatedδ 18O values of hydrothermal fluids — 7.5 to — 1.4%0 (SMOW), strongly suggest a meteoric origin for the fluids. The quite consistentδD values and the range inδ 18O values indicate that major water-rock interaction led to the evolution inδ18O of the hydrothermal fluids.  相似文献   

5.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   

6.
The Pemali tin deposit is located in a Triassic granite pluton the magmatic evolution of which is characterized by a decrease of compatible Ca, Mg, Ti, P and Zr in the sequence: medium- to coarse-grained biotite granite, megacrystic medium-grained biotite granite, two-mica granite/muscovite granite. The tin mineralization is confined to the two-mica granite and consists of disseminated cassiterite as well as greisen-bordered veins. The highly evolved muscovite granite is tin-barren and is distinguished from the two-mica granite by its low mica content and low loss-on-ignition values. The fluid inclusions in quartz and fluorite of the two-mica granite and of the greisen homogenize in the 115–410 °C temperature range; the salinities are in the range of 0.4–23 equiv wt% NaCl and the CO2 concentrations are < 2 mole%.  相似文献   

7.
The Profitis Ilias gold deposit, located on the western part of Milos Island, Greece, is the first epithermal gold deposit discovered in the Pliocene–Pleistocene Aegean volcanic arc. Estimated ore reserves are 5 million tonnes grading 4.4 g/tonne Au and 43 g/tonne Ag. The deposit is closely associated with a horst and graben structure, and occurs in a series of steep interconnected crustiform-banded quartz veins up to 3 m wide, extending to depths of at least 300 m. The mineralisation occurs in three stages and is hosted by 3.5–2.5 Ma old silicified and sericitised rhyolitic lapilli-tuffs and ignimbrites. It consists of pyrite, galena, chalcopyrite, electrum and native gold. Additionally, adularia occurs with quartz mainly in veins. Homogenisation temperatures of primary liquid-rich inclusions vary from 145 to 399 °C for the ore stage, and 112 to 263 °C for the post-ore stage. Salinities range between 0.1 and 11.4 wt% NaCl equiv. and 0.93 to 8.5 wt% NaCl equiv. for the ore stage and the post-ore stage, respectively. Rare vapour-rich inclusions in ore stage quartz homogenise between 368 and 399 °C and estimates of eutectic melting (−25 to −38 °C) indicate the presence of Ca and Mg in the ore fluids. Sample elevation versus fluid inclusion Th–salinity relationships show (1) a high-salinity trend, where moderate-temperature (300–250 °C) and moderate-salinity brines (∼3 wt% NaCl equiv.) trend to high-salinity (up to 15 wt% NaCl equiv.) fluids with lower (∼25–50 °C) homogenisation temperatures, and (2) a high-Th trend where moderate-salinity and moderate-temperature brines (200–250 °C; 3 wt% NaCl equiv.) develop into low-salinity (<1 wt% NaCl equiv.), high-temperature (>350 °C) fluids. These trends are best explained by extreme boiling and vapourisation phenomena between 200 and 250 °C. The 430–450 m asl (metres above sea level) level marks the transition between a lower liquid-dominated segment of the system where only the steep high-salinity trend is seen, and an upper vapour-dominated segment where the high-Th trend or a combination of both are seen. There is a close spatial association between mineable gold grades and the upper segment of the system. Depth-to-boiling curves suggest that the paleo-surface was ∼200 m above the present summit of Profitis Ilias. Comparison of the mineralisation and fluid geochemistry at Profitis Ilias with that of the nearby modern geothermal system indicates that the processes of metal mineralisation have probably been continuous since the Late Pliocene. Received: 24 February 2000 / Accepted: 15 July 2000  相似文献   

8.
The Mount Mulgine Trench deposit is a large, low grade W-Mo resource in Archaean greenstone-granitoid terrain in the Yilgarn Block, Western Australia. The mineralization occupies a quartz vein stockwork zone in a sequence of altered meta-basalts and banded iron formations. The nearby Hill deposit is hosted by a quartzmuscovite greisen on the margin of the synkinematic Mulgine Granite. Fluid inclusion studies show mineralization of the Trench deposit formed over a wide range of temperatures (approximately 500° to 260°C) from a fluid dominated by CaCl2. Scheelite is the dominant W mineral and fluid inclusion data indicate deposition at temperatures of about 420° to 360°C from a fluid containing about 16 wt% CaCl2 equivalent. Field relationships and sulphur isotope studies indicate a magmatic hydrothermal origin related to the Mulgine Granite. Fractures formed during intrusion of the granite provided channels for fluid migration and sites for mineral deposition. Controlling factors on mineral deposition may have been the temperature gradient away from the cooling granite and an increase in a Ca 2 resulting from fluid/rock interaction.  相似文献   

9.
A fluid inclusion investigation of the Carrock Fell tungsten deposit, Northern England, confirms that the quartz-wolframite-scheelite veins associated with the Caledonian Skiddaw Granite are almost exclusively related to an exocontact hydrothermal system developed at the margin of a local cupola. Fluid circulation, as defined by the spatial variation in temperature and H2O/CO2 ratios for inclusions in vein quartz, reveals a strong structural control. The zone of maximum flow, which extends 0–400 m out from the granite contact, is characterised by high H2O/CO2 ratios and corresponds closely with the known distribution of high-grade oreshoots. Based on the fluid inclusion gas signature for the Carrock Fell deposit, a distinction can be made between potentially tungstaniferous quartz veins and those related to Cu-Pb-Zn deposits in the absence of diagnostic ore minerals. Also, a regional survey of quartz veins in the Lake District suggests that at several localities the fluids have a close affinity with those at Carrock Fell. This is interpreted as the high-level, distal expression of tungsten mineralisation at depth. Evidence for similar mineralisation elsewhere in the British Caledonides favours those granites in the paratectonic zones of Ireland and southern Scotland.  相似文献   

10.
This paper presents and discusses new fluid inclusion data on the temperatures, salinities and composition of mineralizing fluids in gangue and ore minerals in late- and post-Hercynian veins and paleokarsts both in the Iglesiente and Sulcis areas of southwest Sardinia. The results suggest that the fluids associated with mineralization are within the range normally recorded for Mississippi Valley-type deposits elsewhere in the world, both for homogenization temperatures (from below 60°C to 130°C for quartz, calcite, barite and dolomite, higher for fluorite) and salinities (5–24 equiv. wt% NaCl). High levels of CaCl2 are also present in the fluids. Similar temperatures and salinities are shown by the dolomitic alteration of the karstified Cambrian limestones, which are the host rocks of the studied ore deposits, indicative of a common origin for both the alteration and mineralization.It is emphasized, however, that the exact origin of the ores is difficult to assess based on fluid inclusion analyses alone because the mentioned temperature range is not necessarily exclusive to either a purely supergene or hydrothermal origin. In view of the high salinities, however, the current opinion is that at least the dolomitization and a part of the ores could be related to late diagenetic processes involving connate waters from the neighboring Permo-Triassic lagoonal-evaporitic sediments.  相似文献   

11.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

12.
The Xiaojiashan tungsten deposit is located about 200 km northwest of Hami City, the Eastern Tianshan orogenic belt, Xinjiang, northwestern China, and is a quartz vein‐type tungsten deposit. Combined fluid inclusion microthermometry, host rock geochemistry, and H–O isotopic compositions are used to constrain the ore genesis and tectonic setting of the Xiaojiashan tungsten deposit. The orebodies occur in granite intrusions adjacent to the metamorphic crystal tuff, which consists of the second lithological section of the first Sub‐Formation of the Dananhu Formation (D2d 12). Biotite granite is the most widely distributed intrusive bodies in the Xiaojiashan tungsten deposit. Altered diorite and metamorphic crystal tuff are the main surrounding rocks. The granite belongs to peraluminous A‐type granite with high potassic calc‐alkaline series, and all rocks show light Rare Earth Element (REE)‐enriched patterns. The trace element characters suggest that crystallization differentiation might even occur in the diagenetic process. The granite belongs to postcollisional extension granite, and the rocks formed in an extensional tectonic environment, which might result from magma activity in such an extensional tectonic environment. Tungsten‐bearing quartz veins are divided into gray quartz vein and white quartz veins. Based on petrography observation, fluid inclusions in both kinds of vein quartz are mainly aqueous inclusions. Microthermometry shows that gray quartz veins have 143–354°C of Th, and white quartz veins have 154–312°C of Th. The laser‐Raman test shows that CO2 is found in fluid inclusions of the tungsten‐bearing quartz veins. Quadrupole mass spectrometry reveals that fluid inclusions contain major vapor‐phase contents of CO2, H2O. Meanwhile, fluid inclusions contain major liquid‐phase contents of Cl?, Na+. It can be speculated that the ore‐forming fluid of the Xiaojiashan tungsten deposit is characterized by an H2O–CO2, low salinity, and H2O–CO2–NaCl system. The range of hydrogen and oxygen isotope compositions indicated that the ore‐forming fluids of the tungsten deposit were mainly magmatic water. The ore‐forming age of the Xiaojiashan deposit should to be ~227 Ma. During the ore‐forming process, the magmatic water had separated from magmatic intrusions, and the ore‐bearing complex was taken to a portion where tungsten‐bearing ores could be mineralized. The magmatic fluid was mixed by meteoric water in the late stage.  相似文献   

13.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

14.
The Moulin de Chéni orogenic gold deposit is the only granite-hosted deposit of the Saint-Yrieix district, French Massif Central. It occurs in 338±1.5 Ma-old peraluminous leucogranites and is characterized by intense microfracturing and bleaching of the granite in relation to pervasive sulfide crystallization. Formation of quartz veins and gold deposition occurred in two successive stages: an early mesozonal stage of quartz-sulfide (Fe-As-S) deposition, usually devoid of gold and a late epizonal stage of base metal and gold deposition. Both stages postdate peak metamorphism and granite intrusion. The genesis of the deposit is the result of four successive fluid events: (1) Percolation of aqueous-carbonic metamorphic fluids under an assumed lithostatic regime of 400–450 °C, at a maximum depth of 13 km; (2) Formation of the main quartz lodes with coeval K-alteration and introduction of As and S from aqueous-carbonic fluids percolating along regional faults. Arsenopyrite and pyrite deposition was linked to the alteration of Fe-silicates into K-feldspar and phengite at near-constant iron content in the bulk granite. Temperature was similar to that of the preceding stage, but pressure decreased to 100–50 MPa, suggesting rapid uplift of the basement up to 7.5 km depth; (3) The resulting extensional tectonic leads to the deposition of gold, boulangerite, galena and sphalerite in brecciated arsenopyrite and pyrite from aqueous fluids during a mixing process. Temperature and salinity decrease from 280 to 140 °C and 8.1 wt% eq. NaCl to 1.6 wt% eq. NaCl, respectively; (4) Sealing of the late fault system by barren comb quartz which precipitated from dilute meteoric aqueous fluids (1.6 wt% eq. NaCl to 0.9 wt% eq. NaCl) under hydrostatic conditions at 200–150 °C.Editorial handling: B. Lehmann  相似文献   

15.
A gold-bearing quartz vein system has been identified in Archaean basement rocks at Sortekap in the Kangerlussuaq region of east Greenland, 35 km north–northeast of the Skaergaard Intrusion. This constitutes the first recorded occurrence of Au mineralisation in the metamorphic basement rocks of east Greenland. The mineralisation can be classified as orogenic style, quartz vein-hosted Au mineralisation. Two vein types have been identified based on their alteration styles and the presence of Au mineralisation. Mineralised type 1 veins occur within sheared supracrustal units and are hosted by garnet-bearing amphibolites, with associated felsic and ultramafic intrusions. Gold is present as native Au and Au-rich electrum together with arsenopyrite and minor pyrite and chalcopyrite in thin alteration selvages in the immediate wall rocks. The alteration assemblage of actinolite-clinozoisite-muscovite-titanite-scheelite-arsenopyrite-pyrite is considered to be a greenschist facies assemblage. The timing of mineralisation is therefore interpreted as being later and separate event to the peak amphibolite facies metamorphism of the host rocks. Type 2 quartz veins are barren of mineralisation, lack significant alteration of the wall rocks and are considered to be later stage. Fluid inclusion microthermometry of the quartz reveals three separate fluids, including a high temperature (T h ?=?300–350 °C), H2O–CO2–CH4 fluid present only in type 1 veins that in interpreted to be responsible for the main stage of Au deposition and sulphidic wall rock alteration. It is likely that the carbonic fluids were actually trapped at temperatures closer to 400 °C. Two other fluids were identified within both vein types, which comprise low temperature (100–200 °C) brines, with salinities of 13–25 wt%?eq. NaCl and at least one generation of low salinity aqueous fluids. The sources and timings of the secondary fluids are currently equivocal but they may be related to the emplacement of Paleogene mafic intrusions. The identification of this occurrence of orogenic-style Au mineralisation has implications for exploration in the underexplored area of east Greenland between 62 and 69°?N, where other, similar supracrustal units are known to be present.  相似文献   

16.
The tin‐ and tantalum‐bearing pegmatites of the Bynoe area are located in the western Pine Creek Geosyncline. They are emplaced within psammopelitic rocks in the contact aureole of the Two Sisters Granite. The latter is a Palaeoproterozoic, fractionated, granite with S‐type characteristics and comprises a syn‐ to late‐orogenic, variably foliated, medium‐grained biotite granite and a post‐orogenic, coarse‐grained biotite‐muscovite granite. The pegmatites comprise a border zone of fine grained muscovite + quartz followed inward by a wall zone of coarse grained muscovite + quartz which is in turn followed by an intermediate zone of quartz + feldspar + muscovite. A core zone of massive quartz is present in some occurrences. Feldspars in the intermediate zone are almost completely altered to kaolinite. This zone contains the bulk of cassiterite, tantalite and columbite mineralization. Fluid inclusions in pegmatitic quartz indicate that early Type A (CO2 + H2O ± CH4) inclusions were trapped at the H2O‐CO2 solvus at P~100 MPa, T~300°C (range 240–328°C) and salinity ~6 wt% eq NaCl. Pressure‐salinity corrected temperatures on Type B (H2O + ~20% vapour), C (H2O + < 15% vapour) and D (H2O + halite + vapour) inclusions also fall within the range of Type A inclusions. Oxygen and hydrogen isotope data show that kaolin was either formed in isotopic equilibrium with meteoric waters or subsequent to its formation, from hydrothermal fluid, underwent isotopic exchange with meteoric waters. Fluid inclusion waters from core zone quartz show enrichment in deuterium suggesting metamorphic influence. Isotope values on muscovite are consistent with a magmatic origin. It is suggested that the pegmatites were derived from the post‐orogenic phase of the Two Sisters Granite. Precipitation of cassiterite took place at about 300°C from an aqueous fluid largely as a result of increase in pH due to feldspar alteration.  相似文献   

17.
A prominent set of veins was formed during post-metamorphic deformation of the Caledonian Dalradian metamorphic belt. These veins are concentrated in dilational zones in fold hinges, but apophyses follow schistosity and fold axial surface fractures. The veins are most common in the cores of regional structures, especially the Dalradian Downbend and consist of quartz, calcite, chlorite and metallic sulphides and oxides. Metals, including gold, have been concentrated in the veins. The fluid which formed the veins was low salinity (1–5 wt% NaCl and KCl) CO2-bearing (3–16 wt% CO2) water of metamorphic origin. The fluid varies slightly in composition within and between samples, but is essentially uniform in composition over several hundred km2. Vein formation occurred at about 350±50 °C and 200–300 MPa pressure. Further quartz mineralization occurred in some dilational zones at lower temperatures (160–180 °C). This later mineralization was accompanied by CO2 immiscibility. Dilution and oxidation of the metamorphic fluid occurred due to mixing with meteoric water as the rocks passed through the brittle-ductile transition. A similar metamorphic fluid is thought to have been responsible for gold mineralization in the nearby Tyndrum Fault at a later stage in the Dalradian uplift.  相似文献   

18.
The Chehugou Mo–Cu deposit, located 56 km west of Chifeng, NE China, is hosted by Triassic granite porphyry. Molybdenite–chalcopyrite mineralization of the deposit mainly occurs as veinlets in stockwork ore and dissemination in breccia ore, and two ore‐bearing quartz veins crop out to the south of the granite porphyry stock. Based on crosscutting relationships and mineral paragenesis, three hydrothermal stages are identified: (i) quartz–pyrite–molybdenite ± chalcopyrite stage; (ii) pyrite–quartz ± sphalerite stage; and (iii) quartz–calcite ± pyrite ± fluorite stage. Three types of fluid inclusions in the stockwork and breccia ore are recognized: LV, two‐phase aqueous inclusions (liquid‐rich); LVS, three‐phase liquid, vapor, and salt daughter crystal inclusions; and VL, two‐phase aqueous inclusions (gas‐rich). LV and LVS fluid inclusions are recognized in vein ore. Microthermometric investigation of the three types of fluid inclusions in hydrothermal quartz from the stockwork, breccia, and vein ores shows salinities from 1.57 to 66.75 wt% NaCl equivalents, with homogenization temperatures varying from 114°C to 550°C. The temperature changed from 282–550°C, 220–318°C to 114–243°C from the first stage to the third stage. The homogenization temperatures and salinity of the LV, LVS and VL inclusions are 114–442°C and 1.57–14.25 wt% NaCl equivalent, 301–550°C and 31.01–66.75 wt% NaCl equivalent, 286–420°C and 4.65–11.1 wt% NaCl equivalent, respectively. The VL inclusions coexist with the LV and LVS, which homogenize at the similar temperature. The above evidence shows that fluid‐boiling occurred in the ore‐forming stage. δ34S values of sulfide from three type ores change from ?0.61‰ to 0.86‰. These δ34S values of sulfide are similar to δ34S values of typical magmatic sulfide sulfur (c. 0‰), suggesting that ore‐forming materials are magmatic in origin.  相似文献   

19.
The Sibutad gold deposit has gold associated in quartz veins. The most important of these is the Lalab orebody, which contains ore‐grade gold, predominantly, in milky quartz veins and veinlets. Here, alteration quartz and fine‐grained crystalline clear and milky quartz were formed from hydrothermal fluids in three stages, namely stages I, II and III. Fluid inclusion microthermometry was carried out on stage I milky quartz, stage II fine‐grained alteration quartz and stage III milky quartz ± barite veins and veinlets. Homogenization temperatures (TH) are >248°C in stage I, 214–232°C in stage II and 186–239°C in stage III. These fluid inclusions have salinity between 1 and 2 wt% NaCl equivalent. In terms of gold assay, stage I drill‐core samples have gold grades 0.53–0.76 g/ton Au, stage II samples have 1.12–3.70 g/ton Au and stage III samples have 9.06–23.88 g/ton Au. This correlation suggests that gold was precipitated from the stage II and III fluids.  相似文献   

20.
The late Triassic Baolun gold deposit hosted by Silurian phyllites is a large‐scale high‐grade gold deposit in Hainan Island, South China. The ores can be classified into quartz‐vein dominated type and less altered rock type. Three mineralization stages were recognized by mineral assemblages. The early stage, as the most important mineralization stage, is characterized by a quartz–native gold assemblage. The muscovite?quartz?pyrite?native gold assemblage is related to the intermedium mineralization stage. In late mineralization stage, native gold and Bi‐bearing minerals are paragenetic minerals. Microthermometry analyses show that the early mineralization stage is characterized by two types of fluid inclusions, including CO2‐rich inclusions (C‐type) and aqueous inclusions (W‐type). C‐type inclusions homogenize at 276–335°C with an averaged value of 306°C and have salinities of 1.0–10.0 wt% NaCl equivalent (mean value of 4.9 wt% NaCl equivalent). W‐type inclusions homogenize at 252–301°C (mean value of 278°C) with salinity of 4.0–9.7 wt% NaCl equivalent (mean value of 7.4 wt% NaCl equivalent). In intermedium mineralization stage, C‐type and W‐type inclusions homogenize at 228–320°C (mean value of 283°C) and 178–296°C (mean value of 241°C), with salinities of 2.4–9.9 wt% NaCl equivalent (mean value of 6.5 wt% NaCl equivalent) and 3.7–11.7 wt% NaCl equivalent (mean value of 7.7 wt% NaCl equivalent), respectively. No suitable mineral, such as quartz or calcite, was found for fluid inclusion study from late mineralization stage. In contrast, only aqueous inclusions were found from post‐ore barren veins, which yielded lower homogenization temperatures ranging from 168–241°C (mean value of 195°C) and similar salinities (2.6–12.6 wt% NaCl equivalent with averaged value of 7.2 wt% NaCl equivalent). The different homogenization temperatures and similar salinities of C‐type and W‐type from each mineralization stage indicate that fluid immiscibility and boiling occurred. The Baolun gold deposit was precipitated from a CO2‐bearing mesothermal fluid, and formed at a syn‐collision environment following the closure of the Paleo‐Tethys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号