首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
年楚河流域是西藏自治区农业相对发达的地区,流域内冰川发育较好,冰川融水是地表径流重要的组成部分,冰湖溃决洪水灾害也威胁着下游村镇和城市。本文利用遥感技术对流域内桑旺错和什磨错两个冰湖特征进行分析,结合实地野外调查,对冰湖变化和溃决特征展开讨论。结果表明:1987-2018年,桑旺错和什磨错都呈扩张趋势,面积分别增加了0.31 km2(5.56%)和0.954 km2(96.9%),变化率分别为0.054 km2·(10a)-1和0.311 km2·(10a)-1。桑旺错和什磨错侧碛垄、终碛垄为松散堆积物,结构松散、稳定性差。桑旺错出水口开阔,出水流畅。什磨错没有出水口,在最内侧终碛垄外有渗流。桑旺错和什磨错后缘冰川冰舌相接,冰舌陡峭,冰舌崩塌可能性较大,同时两湖侧碛垄稳定性较低,也存在崩塌的风险。桑旺错溃决风险较小,什磨错溃决风险较大。  相似文献   

2.
近15a喜玛拉雅山中段波曲流域冰川和冰湖变化   总被引:10,自引:5,他引:5  
陈晓清  崔鹏  杨忠  齐永青 《冰川冻土》2005,27(6):793-800
西藏聂拉木县波曲流域内分布有大量的冰川和冰湖,通过对2000/2001年度遥感数据解译并与1987年的数据对比,发现近15 a来该流域内的冰川面积、冰湖数量和面积等均发生了巨大的变化,结果表明:冰川总面积减小了20%,>0.020 km2的冰湖数量增加了11%,冰湖面积增加了47%.其中位于西夏邦马峰东侧的嘎龙错和扛西错最为典型,面积分别增加了104%和118%.2005年夏季野外考察对以上资料进行了核实.在全球气候变暖的趋势下,预计该流域内的冰川面积将进一步缩小,冰湖数量在小幅增加后将会出现大规模的冰湖溃决,导致严重的泥石流灾害.  相似文献   

3.
冰湖溃决洪水具有范围广、持续时间长、危害大并经常伴随有泥石流发生等特点。目前针对冰湖溃决洪水动力演化特征的定量研究相对匮乏。为此,对次仁玛错冰湖溃决洪水灾害演化特征进行研究,以实地调查及多期遥感影像为基础,并采用泥沙输移模型和水动力模型耦合方法揭示冰湖溃决洪水侵蚀演化特征。模型基于精度为12.5 m的数字高程(DEM)地形数据,模拟反演1981年次仁玛错冰湖溃决洪水动力演化过程,与实测结果进行对比,验证模型的适用性和可行性,并对冰湖再次溃决进行预测分析,定量评价冰湖溃决洪水在演进过程中流深、流速、侵蚀和沉积特征。溃决洪水在演进过程中对章藏布支沟冰碛物及下游沟岸松散坡积物进行冲刷侵蚀,高含沙洪水逐渐演化为稀性泥石流,在707滑坡处流深8~10 m,最大流速13.7 m·s^(-1),侵蚀深度8~9 m。稀性泥石流在主沟沉积形成堰塞坝,坝高9~11 m,短暂堵塞波曲河。稀性泥石流对樟木口岸下游滑坡群坡脚进行冲刷侧蚀,侵蚀深度约10~13 m,易引发大规模次生灾害,稀性泥石流到达水电站处,淤埋水电站进水口,导致水电站失效。整体来看,溃决洪水在演进过程中,洪水对上游沟床及沟岸进行强烈的侵蚀夹带,洪峰流量增强,在中游,稀性泥石流对沟岸进行侧蚀,在沟道狭窄处流速增大,下切侵蚀增强,在沟道宽阔处,流速降低,固体物质沉积,整体达到冲淤平衡,洪峰流量随距离逐渐衰减,至下游,沟道地形开阔,流速放缓,稀性泥石流逐渐沉积,同时对沟道两岸进行侧蚀,整体为沉积。模型可以良好地揭示冰湖溃决洪水灾害侵蚀演化动力特征。  相似文献   

4.
冰湖溃决泥石流的形成、演化与减灾对策   总被引:14,自引:0,他引:14       下载免费PDF全文
本文分析了主要由冰滑坡和冰崩入湖导致的冰湖溃决的机理和条件.进而,从气候条件、水文条件、终碛堤、冰湖规模、冰滑坡、沟床特征和固体物质补给等方面分析了冰湖溃决泥石流的形成条件和特点,归纳出冰湖溃决泥石流沿程演化的6种模式:溃决洪水-稀性泥石流、溃决洪水-黏性泥石流、溃决洪水-稀性泥石流-黏性泥石流、溃决洪水-黏性泥石流-稀性泥石流、溃决洪水-稀性泥石流-黏性泥石流-稀性泥石流和溃决洪水-黏性泥石流-稀性泥石流-洪水.针对冰湖溃决泥石流突发性强、频度低、洪峰高、流量大、流量过程暴涨暴落、破坏力强和灾害波及范围广等特点,提出了7点减灾对策.  相似文献   

5.
基于遥感和GIS的喜马拉雅山科西河流域冰湖变化特征分析   总被引:6,自引:3,他引:3  
受全球气候变暖的影响, 冰川退缩, 冰湖数量增多和面积增大被认为指示气候变化的重要依据, 冰湖面积增大导致其潜在危险性增大. 因此, 研究冰湖的变化对于气候变化和冰湖灾害研究具有重要意义. 基于Landsat TM/ETM+遥感影像采用人工解译的方法, 获取了喜马拉雅山地区科西河流域1990年前后、2000年和2010年的冰湖数据, 并对冰湖面积>0.1 km2且一直存在的199个冰湖的面积和长度变化进行对比分析. 结果表明: 科西河流域内面积>0.1 km2的冰湖的面积呈现增加趋势, 1990年冰湖面积为73.59 km2, 2010年冰湖面积增加至86.12 km2. 科西河流域内喜马拉雅山南北坡冰湖变化存在差异, 喜马拉雅山北坡变化较大的冰湖主要分布在海拔4 800~5 600 m之间, 而南坡变化较大的冰湖主要分布在海拔4 300~5 200 m之间; 喜马拉雅山北坡的冰湖有65%的冰湖表现扩张, 且扩张冰湖的面积主要是由冰湖在靠近终碛垅的一端基本不发生变化, 而仅在靠近冰川一端发生变化贡献的; 喜马拉雅山南坡的冰湖有32%的冰湖变化表现扩张, 且扩张的冰湖面积主要来自于冰面湖扩张. 在科西河流域内, 位于喜马拉雅山北坡的冰湖平均变化速度略高于南坡的冰湖平均变化速度.  相似文献   

6.
希夏邦马峰东坡冰川与冰川湖泊变化遥感监测   总被引:21,自引:9,他引:12  
车涛  李新  P K Mool  许建初 《冰川冻土》2005,27(6):801-805
1977-2003年的遥感影像显示,希夏邦马峰东坡的冰川在迅速退缩,而其相应的冰川湖泊在迅速增大.南部的吉葱普冰川每年的退缩速度57099 m2,冰舌退缩48 m·a-1,相应的卢姆池米冰湖面积增加速度大约为79048 m2·a-1;北面的热强冰川退缩速度在63224 m2·a-1,冰舌退缩71 m·a-1,相应的扛西错冰湖面积增加约73 425 m2·a-1.从这两个冰湖的类型和变化分析,认为其具有发生冰川湖泊溃决洪水的潜在危险.  相似文献   

7.
青藏高原可可西里盐湖水位上涨趋势及溃决风险分析   总被引:1,自引:1,他引:0  
2011年位于可可西里腹地的卓乃湖溃决引起的盐湖水位上涨和面积增大趋势仍在快速发展。遥感资料显示,卓乃湖溃决后,盐湖面积持续增加,从2012年的134.1 km2一直持续增大到2018年的197.5 km2,尤其是2016-2018年增加较快,面积增加了42.0 km2,即平均每年增加14.0 km2。水位监测数据显示,2016年5月20日至2018年11月11日期间,盐湖水位共上升了8.241 m,年平均上升2.747 m。目前盐湖的面积仅比模拟的溢出面积小19.3~21.1 km2;湖泊水位仅比分水岭最低处低4.09 m。按照2016-2018年面积和水位变化趋势,预计盐湖将在未来1~2年内可能发生溢水溃决。研究表明:近年来区域降水增加、卓乃湖溃决后地下水释放、上游湖泊出水口可能存在侵蚀扩大导致湖水继续向下输送等原因是导致盐湖水位持续上涨和面积快速增大的主要原因。利用水库溃坝预测分析模型,对盐湖溢水溃决冲沟形成时洪峰流量预测表明,盐湖溢水溃决时将形成巨大的洪峰流量,洪水将对青藏公路、青藏铁路和兰西拉光缆等造成危害,建议尽快开展盐湖潜在的湖水外溢途径地质条件调查,并设计防治措施。  相似文献   

8.
西藏典型冰湖溃决型泥石流的初步研究   总被引:6,自引:0,他引:6  
西藏地区冰川面积约为35000km^2,是我国现代冰川分布最多的地区,也是现代冰湖分布最多的地区.在现代冰川前进或跃动、冰舌断裂、冰湖岸坡出现崩塌或滑坡、温度骤然增加导致冰川融化加速、湖口向源侵蚀加剧、坝体下部管涌引起塌陷等诸多可能因素的影响下易造成冰湖溃决,出现洪水、稀性泥石流、粘性泥石流等危害方式,造成的灾害远远大于由降水引发的泥石流灾害,常常形成危害严重的地质灾害链.  相似文献   

9.
冰湖溃决泥石流形成的临界条件   总被引:2,自引:0,他引:2  
党超  褚娜娜  丁瑜 《冰川冻土》2014,36(5):1176-1183
随着全球气候的变暖, 在世界上许多高山峡谷区的冰湖溃决及其溃决洪水引发的泥石流, 经常对下游居民及其他基础设施造成极为严重的危害. 使用水槽试验的方法, 从单宽流量和库容、沟道纵坡、堆积物粒径3个方面探讨了冰湖溃决泥石流形成的影响因素和临界条件. 结果显示: 冰湖溃决泥石流形成与否不仅与溃决洪水提供的能量有关, 还与参与泥石流活动的沟床物质特性紧密相关. 通过对试验数据的分析, 当泥石流形成的特征参数K>2.66时, 冰湖溃决洪水可以演化为泥石流. 该种方法可以对危险性冰湖的预测提供理论参考.  相似文献   

10.
藏东南冰湖溃决泥石流灾害及其发展趋势   总被引:9,自引:3,他引:6  
冰湖溃决泥石流是高山冰湖溃决洪水引起的突发性泥石流,是一种自然灾害现象.西藏冰湖溃决泥石流集中分布于东南部的雅鲁藏布江、波曲及朋曲流域等.冰湖溃决泥石流常形成灾害链对藏东南社会、经济危害严重.分析了气温和降水对冰湖溃决和及其所形成的泥石流的影响,认为冰湖的溃决大部分是由于异常气候条件造成的,冷湿的气候有利于冰川的积累,当气候转为湿热和干热或气温突然升高0.6~1.2 ℃时最易引起冰湖溃决泥石流.通过对西藏地区气候变化的研究,对未来50 a藏东南冰湖溃决泥石流的发展趋势作了预测探讨.一般来讲,气温升高,冰川融水的增加有个临界点,当过了临界点后其冰川融水将会减少,冰湖溃决可能性减少,冰湖溃决泥石流也将减少.也就是说,未来西藏东南部冰湖溃决泥石流的发展趋势,将呈倒"U"字型.冰湖溃决泥石流的发生更多地依赖于突发性的降雨增多.  相似文献   

11.
Glacial lake outburst flood (GLOF) is a powerful natural phenomenon that is very active in the Karakoram and Himalayas. This paper presents a case study from Gupis Tehsil in northern areas of Pakistan that is exposed to GLOFs from nine different glacial lakes in its upper catchment areas. Khukush Lake being the largest of all the glacial lakes has been studied and a flood attenuation model has been created for the whole Gupis Tehsil. This lake covers almost 2.2 km2 of surface area, and its calculated volume is 2.6 × 104 m3. In case of its outburst, the peak flow discharge is calculated to be 7,642 m3/s. The catchment area which contributes water and debris to the lake is 170 km2. This lake is dammed by a glacial moraine, which is not strong enough to sustain the pressure for a longer period of time. Other factors that are reducing the reliability of the dam are the secondary hazards which are in direct contact with the lake, and in case of their reactivation, they can put severe impacts on the dam. There are eight potential sites of the snow avalanche activity where debris along with snow may fall directly into the lake producing a strong wave. This strong wave of water will increase the pressure on the dam and ultimately will increase the probability for its outburst. The presense of water springs towards the downstream side of the natural dam also indicate the presence of hidden channels passing through the dam which may weaken the shear strength of the dam. Almost 24 villages settled along either sides of the Gupis River are critically studied for the expected flood from Khukush Lake. With few exceptions, almost 20–25 % area of all the villages will be affected from this flood.  相似文献   

12.
Glacial hazards relate to hazards associated with glaciers and glacial lakes in high mountain areas and their impacts downstream. The climatic change/variability in recent decades has made considerable impacts on the glacier life cycle in the Himalayan region. As a result, many big glaciers melted, forming a large number of glacial lakes. Due to an increase in the rate at which ice and snow melted, the accumulation of water in these lakes started increasing. Sudden discharge of large volumes of water with debris from these lakes potentially causes glacial lake outburst floods (GLOFs) in valleys downstream. Outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure. Monitoring of the glacial lakes and extent of GLOF impact along the downstream can be made quickly and precisely using remote sensing technique. A number of hydroelectric projects in India are being planned in the Himalayan regions. It has become necessary for the project planners and designers to account for the GLOF also along with the design flood for deciding the spillway capacity of projects. The present study deals with the estimation of GLOF for a river basin located in the Garwhal Himalaya, India. IRS LISSIII data of the years 2004, 2006 and 2008 have been used for glacial lake mapping, and a total of 91 lakes have been found in the year 2008, and out of these, 45 lakes are having area more than 0.01?km2. All the lakes have been investigated for vulnerability for potential bursting, and it was found that no lake is vulnerable from GLOF point of view. The area of biggest lake is 0.193, 0.199 and 0.203?km2 in the years 2004, 2006 and 2008, respectively. Although no lake is potentially hazardous, GLOF study has been carried out for the biggest lake using MIKE 11 software. A flood of 100-year return period has been considered in addition to GLOF. The flood peak at catchment outlet comes out to be 993.74, 1,184.0 and 1,295.58 cumec due to GLOF; 3,274.74, 3,465.0 and 3,576.58 cumec due to GLOF; and 100-year return flood together considering breach width of 40, 60 and 80?m, respectively.  相似文献   

13.
冰湖溃决洪水(Glacial lake outburst flood,简称GLOF)灾害是冰川区最常见、危害最大的灾害类型之一,历来是国内外学者研究的关键科学问题。在全球变暖的大背景下,冰川退缩加剧,其下游冰湖扩张快速,湖面升高,溃决风险提高。青藏高原尤其是东南部地区孕育着大量的冰湖,在过去的几十年间,冰湖溃决洪水威胁着当地人民的生产生活。基于LANDSAT遥感影像,本文获取了青藏高原东南部雅弄冰川和来古冰湖1986年、1990年、1994年、1997年、2000年、2003年、2005年、2011年、2013年和2017年共10期湖面面积,并结合实地测量的冰湖水深资料,计算了冰湖对应年份的储水量,建立冰湖面积与储水量变化序列;结合野外调查从冰湖面积与水量变化趋势和突发事件两方面探讨冰湖溃决可能性;利用BREACH模型和SMPDBK模型估算和模拟来古冰湖溃决洪水,做灾害预警分析。结果表明,1986~2017年冰湖上湖变化不大,而来谷下湖处于持续扩张中,面积由1986年的1.151±0.070 km^2扩张至2017年的3.148±0.097 km^2,水量由0.645×10^8 m^3增加至2.143×10^8 m^3,雅弄冰川在1986~2013年持续后退,在2013~2017年突然前进;经讨论其溃决风险得出冰川滑动入湖导致湖水瞬时涌出从而造成溃坝的可能性较高;利用BREACH模型及SMPDBK模型对来古冰湖溃决洪水模拟结果表明,当来古下湖湖水受冰体挤压抬升发生溃决时,溃决洪水将严重威胁然乌镇及其上游居民的生命和财物安全。  相似文献   

14.
During the Middle Pleistocene late Saalian glaciation of northern central Europe numerous pro‐glacial lakes formed along the southwestern margin of the Scandinavian Ice Sheet. Little is known about the drainage history of these lakes, the pathways of glacial lake outburst floods and their impacts on erosion, sedimentation and landscape evolution. This study investigated the impact of the late Saalian Weser and Münsterland Lake (Germany) outburst floods. In particular, we reconstructed the routing and flow dynamics of the lake outburst flood and analysed the flood related sediments. We employed one‐dimensional hydraulic modelling to calculate glacial lake outburst flood hydrographs. We modelled the flow pathway and local flow conditions along the pathway based on the boundary conditions of two different hydrographs and two different ice‐margin positions. The modelling results were compared with geomorphological and sedimentological field data in order to estimate the magnitude and impact of the flood on erosion and sedimentation. Two major lake drainage events are reconstructed for the study area, during which approximately 90–50 km3 of water was released. Modelling results indicate that the lake outburst floods created a high‐energy flood wave with a height of 35–50 m in confined valley areas that rapidly spread out into the Lower Rhine Embayment eventually flowing into the North Sea basin. The sedimentary record of the outburst floods comprises poorly sorted coarse‐grained gravel bars, long‐wavelength bedforms and sandy bedforms deposited by supercritical and subcritical flows. Some parts of the sandy flood deposits are rich in reworked mammoth bones or mammoth and horse teeth, pointing to reworking of older fluvial sediments, hydraulic concentration and subsequent re‐sedimentation of vertebrate remains. These deposits are preserved in sheltered areas or at high elevations, well above the influence of postglacial fluvial erosion. The flood‐related erosional features include up to 80‐m‐deep scour pools, alluvial channels and streamlined hills.  相似文献   

15.
    
At least six devastating glacial floods occurred in the Karambar valley in the 19th and 20th century. Previously mainly the Karambar glacier was considered as the origin of these outburst floods. However, in this project more detailed investigations revealed that up to eight more tributary glaciers could have dammed the Karambar valley in historical and prehistorical times. The ice-dammed lakes reached an approximate length of up to about 5 km and more. The dense concentration of the glacier dams along a horizontal distance of only 40 km results in a complex interfingering of lake basins and flooded valley sections. In the individual flood events were probably involved almost synchronously the drainage of at least two lakes resulting in a lake outburst cascade. The Karambar case study highlights the characteristic geomorphological landforms of the glacier dams, their lake basins and the geomorphological impact of the outburst floods. The abundant occurrence of unconsolidated sediments mantling the valley flanks caused a high sediment load and enhanced the erosion potential of the flood. The erosion cliffs of sediment cones, up to 100 m high, wash limits along the slopes and longitudinal bars in the gravel floors are main characteristics of the flood landscape. Secondary temporary lake formations (back water ponding) during the flood events in consequence of blockages of the ice- and sediment-loaden flood masses occurred at many locations in the narrower valley sections and lasted for several days. Additionally, debris flows in-between the glacier dams have dammed temporarily the Karambar valley. On the basis of losses of settlement area and eye-witness reports, the extent, erosion rates and characteristics of the 1905 flood event could be reconstructed. In order to warn the villagers living downstream, the Karambar people established an early warning fire system (Puberanch) from Sokther Rabot to Gilgit which was operated until 1905. The reconstructed Karambar flood chronology represents one of the longest records for this region and provides also information on historical and recent glacier oscillations, especially on exceptional glacier advances. At present, the Chateboi glacier seals the Karambar valley over a distance of 4 km. An outburst flood would have disastrous impacts to the human infrastructure as the settlement areas expanded to the flood plains in the last decades.  相似文献   

16.
At least six devastating glacial floods occurred in the Karambar valley in the 19th and 20th century. Previously mainly the Karambar glacier was considered as the origin of these outburst floods. However, in this project more detailed investigations revealed that up to eight more tributary glaciers could have dammed the Karambar valley in historical and prehistorical times. The ice-dammed lakes reached an approximate length of up to about 5 km and more. The dense concentration of the glacier dams along a horizontal distance of only 40 km results in a complex interfingering of lake basins and flooded valley sections. In the individual flood events were probably involved almost synchronously the drainage of at least two lakes resulting in a lake outburst cascade. The Karambar case study highlights the characteristic geomorphological landforms of the glacier dams, their lake basins and the geomorphological impact of the outburst floods. The abundant occurrence of unconsolidated sediments mantling the valley flanks caused a high sediment load and enhanced the erosion potential of the flood. The erosion cliffs of sediment cones, up to 100 m high, wash limits along the slopes and longitudinal bars in the gravel floors are main characteristics of the flood landscape. Secondary temporary lake formations (back water ponding) during the flood events in consequence of blockages of the ice- and sediment-loaden flood masses occurred at many locations in the narrower valley sections and lasted for several days. Additionally, debris flows in-between the glacier dams have dammed temporarily the Karambar valley. On the basis of losses of settlement area and eye-witness reports, the extent, erosion rates and characteristics of the 1905 flood event could be reconstructed. In order to warn the villagers living downstream, the Karambar people established an early warning fire system (Puberanch) from Sokther Rabot to Gilgit which was operated until 1905. The reconstructed Karambar flood chronology represents one of the longest records for this region and provides also information on historical and recent glacier oscillations, especially on exceptional glacier advances. At present, the Chateboi glacier seals the Karambar valley over a distance of 4 km. An outburst flood would have disastrous impacts to the human infrastructure as the settlement areas expanded to the flood plains in the last decades.  相似文献   

17.
Knowledge of Himalayan cryosphere seems to be an outstanding requirement for assessment of glacier storage, water balance analysis, planning of water resources and flood hazard monitoring. A stepwise approach through mapping glaciers and glacial lakes using satellite remote sensing data and investigating potential glacial lake outburst flood (GLOF) hazards was adopted for the three Hindukush, Karakoram and Himalayan (HKH) ranges of Pakistan. The findings of the study revealed 5,218 glaciers in the cryosphere of HKH ranges. The cumulative glacial cover of over 15,000 km2 contains ice reserves of about 2,738 km3. About 46 % of the Karakoram glaciers are contributing 77 % to the total glacial cover and 87 % to the cumulative ice reserves of the country. The 33 % Himalayan glaciers and 21 % Hindukush glaciers contribute only 3 and 10 % ice reserves, respectively. Among 2,420 glacial lakes identified in the three HKH ranges, 52 were classified as critical lakes that can pose GLOF hazard for the downstream communities. Most of the potential hazardous lakes lie in the Karakoram and Himalayan ranges, the monitoring of which is crucial to reduce high risk of future floods hazard in this fragile mountain ecosystem of the Himalayan region.  相似文献   

18.
Decay of the last Cordilleran Ice Sheet (CIS) near its geographical centre has been conceptualized as being dominated by passive downwasting (stagnation), in part because of the lack of large recessional moraines. Yet, multiple lines of evidence, including reconstructions of glacio‐isostatic rebound from palaeoglacial lake shoreline deformation suggest a sloping ice surface and a more systematic pattern of ice‐margin retreat. Here we reconstructed ice‐marginal lake evolution across the subdued topography of the southern Fraser Plateau in order to elucidate the pattern and style of lateglacial CIS decay. Lake stage extent was reconstructed using primary and secondary palaeo‐water‐plane indicators: deltas, spillways, ice‐marginal channels, subaqueous fans and lake‐bottom sediments identified from aerial photograph and digital elevation model interpretation combined with field observations of geomorphology and sedimentology, and ground‐penetrating radar surveys. Ice‐contact indicators, such as ice‐marginal channels, and grounding‐line moraines were used to refine and constrain ice‐margin positions. The results show that ice‐dammed lakes were extensive (average 27 km2; max. 116 km2) and relatively shallow (average 18 m). Within basins successive lake stages appear to have evolved by expansion, decanting or drainage (glacial lake outburst flood, outburst flood or lake maintenance) from southeast to northwest, implicating a systematic northwestward retreating ice margin (rather than chaotic stagnation) back toward the Coast Mountains, similar in style and pattern to that proposed for the Fennoscandian Ice Sheet. This pattern is confirmed by cross‐cutting drainage networks between lake basins and is in agreement with numerical models of North American ice‐sheet retreat and recent hypotheses on lateglacial CIS reorganization during decay. Reconstructed lake systems are dynamic and transitory and probably had significant effects on the dynamics of ice‐marginal retreat, the importance of which is currently being recognized in the modern context of the Greenland Ice Sheet, where >35% of meltwater streams from land‐terminating portions of the ice sheet end in ice‐contact lakes.  相似文献   

19.
Glacier lakes pose threat to downstream settlements and infrastructure. In recent decades the number and area of lakes have been growing at an accelerating rate due to worldwide glacier shrinkage. In the Russian Caucasus this process is understudied. We present results obtained during a 12-year (1999–2010) continuous field monitoring of the Bashkara proglacial lakes group, which we identified as the place with the highest GLOF risk in the region. Recession of the parent Bashkara Glacier was the main driver of the rapid expansion of the lower Lake Lapa. The upper Lake Bashkara has not been enlarging, but its water level has shown significant inter- and intra-annual fluctuations. The lake outburst probability has increased in recent years, and in 2008 we observed surface overflow over the moraine dam. Taking into account that in the late 1950s lake outbursts at this site led to large-scale glacial debris flows, we have simulated a potential outburst using River and FLO-2D software and carried out hazard zonation. An early warning system has been designed and established at Lake Bashkara, and measures to mitigate risk have been proposed. Rapid change of proglacial lakes requires regular monitoring in ‘hot spot’ areas where the GLOF hazard is high and is dynamically changing.  相似文献   

20.
《Quaternary Research》2011,76(3):393-396
A prominent lake formed when glaciers descending from the Kodar Range blocked the River Vitim in central Transbaikalia, Siberia. Glacial Lake Vitim, evidenced by palaeoshorelines and deltas, covered 23,500 km2 and held a volume of ~ 3000 km3. We infer that a large canyon in the area of the postulated ice dam served as a spillway during an outburst flood that drained through the rivers Vitim and Lena into the Arctic Ocean. The inferred outburst flood, of a magnitude comparable to the largest known floods on Earth, possibly explains a freshwater spike at ~ 13 cal ka BP inferred from Arctic Ocean sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号