首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中国西南部红河断裂带的活动演化历史长期以来备受国内外学者的关注,该断裂从陆地向海域延伸进入莺歌海盆地,并对莺歌海盆地的形成和演化起重要的控制作用。目前,红河断裂带经历早期的左旋走滑运动和后期的右旋走滑运动已经得到公认,但对于其精细的构造演化历史及其左旋走滑向右旋走滑运动转换的时间还未能达成共识。本文利用构造控制沉积、沉积反映构造的思想,通过对莺歌海盆地三维地震资料的构造解析,从T27界面上下地层厚度存在"跷跷板"式的变化、沉积中心的迁移、沉积速率的变化、陆架-陆坡坡折带的出现、微小断裂的特征以及底辟构造等方面的研究,确定莺歌海盆地红河断裂带的左旋走滑运动停止于T40(10.5Ma);T40~T30(10.5~5.5Ma)是构造变形的平静期;T30~T27(5.5~2.4 Ma)为左旋走滑运动向右旋走滑运动转换时期;T27(2.4 Ma)以后右旋走滑活动开始,并控制坡折带(包括莺歌海盆地和琼东南盆地)和底辟构造等的形成;T20(1.9 Ma)以来,右旋走滑活动逐渐减弱。  相似文献   

2.
莺歌海盆地构造演化与强烈沉降机制的分析和模拟   总被引:12,自引:3,他引:9  
孙珍  钟志洪  周蒂 《地球科学》2007,32(3):347-356
莺歌海盆地新生代发生了快速沉降, 盆内充填了最厚达17 km的沉积, 根据模拟实验, 印支地块或之上刚性地块的存在对莺歌海盆地的强烈沉降具有重要的贡献, 可能是造成莺歌海盆地裂陷期强烈沉降的重要原因之一.结合地质分析和物理模拟实验, 莺歌海盆地的演化大致可以分为以下4个主要阶段: 早期(42 Ma以前) 主要受到南海北部陆缘(主要是北部湾盆地) 裂解造成的右旋转换伸展作用的影响, 但影响范围较小, 主要为莺歌海盆地西北部和东部边界.42~21 Ma期间, 主要受控于印支地块左行走滑和顺时针旋转作用的影响, 莺歌海盆地在此期间发育了主体裂陷体系, 东侧受到右旋转换伸展应力场的叠加影响而导致沉降加强; 21~10.4 Ma期间, 受印支地块逐渐减弱直至停止的左行走滑作用的影响, 盆地西北部在21~15.5 Ma期间发生局部反转褶皱, 但盆地整体进入以热沉降为主的时期; 10.4 Ma以后, 盆地受华南地块沿红河断裂右旋走滑作用和5 Ma以后新一期热事件的影响.   相似文献   

3.
琼东南盆地新生代发育机制的模拟研究   总被引:5,自引:0,他引:5  
琼东南盆地是南海西北陆缘上一个北东走向的伸展裂陷带,向西与北西走向的莺歌海盆地相接,因此其构造演化包含了较多红河断裂走滑活动的信息。综合地质分析与物理模拟实验,我们发现琼东南盆地的发育既受控于南海北部陆缘的南东向—南南东向伸展作用,而且受到红河断裂左行走滑作用的控制和影响。其中,中央坳陷带主要受控于南东至南南东向的伸展作用;南部坳陷带的发育主要受控于琼东南盆地的伸展及其沿北北西向边界断裂右行走滑作用的构造叠加;而北部坳陷带的发育主要受控于北西向断裂左行走滑作用。红河断裂左行走滑作用可能开始于晚始新世,晚于琼东南盆地的伸展裂陷作用,且早期走滑速率应小于琼东南盆地的伸展速率,早渐新世(T70)以后红河断裂左行走滑速率大于琼东南盆地伸展速率,导致琼盆西段的褶皱反转,以及一组北西—北北西走向张剪断裂的发育。  相似文献   

4.
琼东南盆地西南部新生代裂陷特征与岩浆活动机理   总被引:8,自引:4,他引:4  
琼东南盆地是南海西北陆缘上一个北东走向的伸展裂陷带,向西与北西走向的莺歌海盆地相接,因此其西南部的构造演化包含了较多红河断裂走滑活动的信息。综合地质分析,我们发现琼东南盆地的发育既受控于南海北部陆缘的南东-南南东向伸展作用,又受到红河断裂左行走滑作用的控制和影响。盆地西南部裂陷带内发育了复式裂陷结构,由复式半地堑和复式地堑构成;裂陷带边缘的斜坡带和隆起上,以半地堑样式为主。始新世-早渐新世岩浆活动较多,主要表现为顺层充填的火山活动;中中新世后的岩浆活动分布较广,主要沿北西走向大断裂分布,在地震剖面上主要表现为尖锥状火山式活动特点。海盆扩张期,凹陷内缺乏岩浆活动。推测复式裂陷特点和较多的岩浆活动与陆坡区地幔上涌较高,具有较高的地温梯度,导致岩石圈弹性厚度降低有关。  相似文献   

5.
The northern Tibetan Plateau has evolved a unique basin-range structure characterized by alternating elongated mountain ranges and basins over a history of multiple tectonic and fault activities. The Subei basin recorded evolution of this basin-range structure. In this study, detailed detrital apatite fission track (AFT) thermochronological studies in conjunction with previously documented data reveal provenance of the Subei basin, important information about the Indo-Eurasia collision, and two Miocene uplift and exhumation events of the northern Tibetan Plateau. Detrital AFT analyses combined with sedimentary evidences demonstrate that the Danghenanshan Mountains is the major provenance of the Subei basin. In addition, very old age peaks indicate that part sediments in the Subei basin are recycling sediments. Age peak populations of 70–44 Ma and 61–45 Ma from the lower and upper Baiyanghe formations record the tectono-thermal response to the Indo-Eurasia collision. Combined detrital AFT thermochronology, magnetostratigraphy and petrography results demonstrate the middle Miocene uplift and exhumation event initiated 14–12 Ma in the Subei basin, which may resulted from the Miocene east-west extension of the Tibetan Plateau. Another stronger uplift and exhumation event occurred in the late Miocene resulted from strengthened tectonic movement and climate. A much younger AFT grain age, breccia of diluvial facies and boulders of root fan subfacies record the late Miocene unroofing in the Danghenanshan Mountains.  相似文献   

6.
滇西高原的隆升与莺歌海盆地的沉积响应   总被引:22,自引:0,他引:22  
滇西高原的隆升引起莺歌海盆地的沉积速率、沉积通量的陡增、层序界面间的不整合,高原内部盆地沉积速率增加、充填序列改变、间歇性隆升剥蚀。根据这些响应标志重塑了滇西高原的隆升历史 :(1 ) 2 3~ 1 9Ma的初始隆升;(2 ) 1 6.2~ 1 1Ma的快速隆升;(3) 1 1~ 5.3Ma的剥蚀夷平;(4) 5.3~ 1.6Ma的急剧隆升,滇西高原基本定型;(5)1.6~ 0Ma的剥蚀 -隆升加速期。  相似文献   

7.
蔡火灿  王伟涛  段磊  张博譞  刘康  黄荣  张培震 《地质学报》2022,96(10):3345-3359
青藏高原东北缘是高原由西南向东北方向扩展的前缘位置,其新生代构造变形对揭示青藏高原隆升、扩展的过程与动力学机制具有重要的意义。柴达木盆地是青藏高原东北缘最大的新生代沉积盆地,发育巨厚的新生代地层,这些地层所记录的古地磁极旋转信息是定量约束柴达木盆地新生代以来构造变形发生的时间、方式与幅度的载体。本文以柴达木盆地北缘新生代地层出露良好、具有精确地层年代控制的路乐河剖面为研究对象,开展了古地磁极旋转研究,统计分析路乐河剖面24. 6~5. 2 Ma之间1477个可靠古地磁样品的特征剩磁方向(ChRM),发现柴达木盆地北缘路乐河地区在24. 6~16. 4 Ma发生小幅度(不显著)的逆时针旋转,旋转角度约为8. 4°±6. 1°;16. 4~13. 9 Ma路乐河地区发生显著的顺时针旋转,旋转角度可达36. 1°±6. 0°;13. 9~5. 2 Ma 该地区未发生明显的构造旋转;5. 2 Ma以后路乐河地区逆时针旋转了~6°。结合柴达木盆地北缘区域构造变形的分析,我们提出柴达木盆地北缘路乐河地区在16. 4~13. 9 Ma 之间发生强烈的顺时针旋转构造变形(~36°)可能代表了盆地北缘中中新世遭受强烈的地壳差异缩短变形,从而成为高原最新形成的部分。  相似文献   

8.
The Yinggehai basin is located on the northwestern shelf of the South China Sea. It is the seaward elongation of the Red River Fault Zone (RRFZ). The orientation and rift shape of the Yinggehai basin are mainly controlled by NW-, NNW- and nearly NS-trending basal faults. The depocenter migrated southeastward when the basin developed. The depocenter trended northwest before about 36 Ma, then jumped southward and became nearly N–S trending and migrated toward the southeast up to 21 Ma; thereafter, the depocenter trended northwest again. Based on above and structural evolution in neighbor areas, it is believed that the Yinggehai basin formation was mainly controlled by the extrusion accompanied by clockwise rotation of Indochina. We set up analogue models (thin basal plate model and thick basal plate model) to investigate the evolution of Yinggehai basin. From the experiments, we consider that the basin evolution was related to the extrusion and clockwise rotation of the Indochina block, which was caused by the collision of the Indian plate and Tibet. This process took place in four main stages: (1) Slow rifting stage (before 36 Ma) with a NW-trending depocenter; (2) rifting stage formed by sinistral slip of the Indochina block accompanied by rapid clockwise rotation between 36 and 21 Ma; (3) rifting-thermal subsidence stage affected by sinistral slip of the Indochina (21–5 Ma) block and (4) dextral strike–slip (5–0 Ma).  相似文献   

9.
碎屑组分变化是反映盆地物源演化历程的重要物质表现。路乐河地区作为柴达木盆地的重要组成部分,沉积地层记载着印度-欧亚板块碰撞以来青藏高原北缘造山带的构造隆升过程。高长石组分含量、物源方向及毗邻山脉岩性对比揭示,路乐河物源主要受南祁连和赛什腾山控制,其碎屑组分变化对毗邻造山带构造活动具有很好的耦合性。新生代53.5~2.9Ma期间,路乐河地区存在3次物源转换事件,发生时间依次同印度-欧亚板块碰撞及高原内部构造隆升事件相吻合。其中早期50.1~46.6Ma,南祁连山的快速抬升是对大陆初始碰撞的远程响应;44.5Ma,高原以垂向增生和推覆构造发育为特点,赛北断裂高速剥露,致使路乐河地区物源发生转变;渐新世末期(22.6Ma),青藏高原准同时整体隆升,赛什腾山和南祁连山协同为路乐河地区供给沉积物。所获认识为深入了解高原隆升演化和板块碰撞远程效应提供新的沉积依据。  相似文献   

10.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   

11.
The large Miocene-aged palaeo canyon that extents through the Qiongdongnan basin (QDNB) and Yinggehai basin (YGHB) of Northern South China Sea has been of considerable interest both economically and scientifically over the past decade. Stemmed from this, significant research has been employed into understanding the mechanism for its existence, incision, and sedimentary fill, yet debate remains. In the first case the canyon itself is actually quite anomalous. Alone from the size (over 570 km in length and more than 8 km in width (Yuan et al., 2009)), which is considerably more than most ancient deep-water channels (REFS), the canyon’s sedimentary fill is also distinctly different. Some explanations have been given to explain the canyon’s origin and existence, these include increased sediment supply from the Red River which is genetically linked to uplift of the Tibetan Plateau, lowstand turbidite and mass-transport activity, reactivation and dextral displacement of the Red River Fault zone inducing erosive gravity-flows, regional tilt of the QDNB and YGHB, paleo-seafloor morphology and seal-level fluctuations. With the application of new data obtained from interpretations of a large number of 2D seismic profiles, core and well log data, and tectonic and sedimentary analysis this contribution aims to: (1) Present models to explain the Canyon’s sedimentary fill and basin plain deposits, which provided significant understanding of processes pre-, syn- and post-incision and; (2) review the plausibility and likelihood of each of the controlling mechanisms, hoping to shed light on this controversial aspect. We conclude that the final erosive event that shaped the canyon is dated at 5.5 Ma. The Canyon’s unusual fill is a product of variation in the interaction between turbidity currents and MTD that blocked the canyon’s axis, and the reduction in gravity flow energy through time; and therefore the complete succession represents one major erosive and cut event at 5.5 Ma and thereafter multi-gravity currents fills unlike in most slope channel-fills.  相似文献   

12.
ABSTRACT

We calculated the sedimentary budget of the Northwest Sub-basin (NWSB), South China Sea for different geological times based on interpretations of four multichannel seismic profiles across the basin with constraints from International Ocean Discovery Program (IODP) Expeditions 367 and 368 drilling results. Sedimentation was generally dominated by regional tectonic events and climate change, but complicated by local tectonic events and geographic position, which resulted in a specific sedimentary budget in the NWSB compared with other marginal basins and the Southwest Sub-basin. The sedimentation rate was relatively low following the opening of the NWSB but increased gradually during the Middle Miocene, corresponding to the uplift of the Tibetan Plateau and the Asian monsoon. It reached its peak in the Late Miocene, corresponding to uplift of the Dongsha Island region that caused intensive bypass of eroded sediments from the Baiyun Sag into the abyssal basin, and reduced again during the Pliocene because of sediment storage on the wide northern continental shelf area compared to the abyssal basin during a period of high-stand sea level. Increase in sedimentation during the Pleistocene suggests that continental erosion and sediment transport to the abyssal basin were enhanced by an intensified Asian summer monsoon and glacial-interglacial climate fluctuations. Since the opening of the NWSB, the primary sediment provenance has been from southern China, with minor contributions from the Red River, Hainan Island, as well as local uplifts on the continental shelf.  相似文献   

13.
The northeastern Tibetan Plateau is located at the convergence of the Asian winter and summer monsoons and westerlies; thus, this area has witnessed historic climate changes.The Xunhua basin is an intermontane basin on the northeastern margin of the Tibetan Plateau.The basin contains more than 2000 m of Cenozoic fluvial–lacustrine sediments, recording a long history of climate and environmental changes.We collected the mid-Miocene sediments from the Xunhua basin and used palynological methods to discuss the relationship between aridification in the interior of Asia, global cooling, and uplift of the Tibetan Plateau.Based on the palynological analysis of the Xigou section, Xunhua basin, the palynological diagram is subdivided into three pollen zones and past vegetation and climate are reconstructed.Zone I, Ephedripites–Nitraridites–Chenopodipollis–Quercoidites(14.0–12.5 Ma), represents mixed shrub–steppe vegetation with a dry and cold climate.In zone II, Pinaceae–Betulaepollenites–Ephedripites–Chenopodipollis–Graminidites(12.5–8.0 Ma), the vegetation and climate conditions improved, even though the vegetation was still dominated by shrub–steppe taxa.Zone III, Ephedripites–Nitrariadites–Chenopodipollis(8.0–5.0 Ma), represents desert steppe vegetation with drier and colder climate.The palynological records suggest that shrub–steppe dominated the whole Xigou section and the content gradually increased, implying a protracted aridification process, although there was an obvious climate improvement during 12.5–8.0 Ma.The aridification in the Xunhua basin and surrounding mountains during 14.0–12.5 Ma was probably related to global cooling induced by the rapid expansion of the East Antarctic ice-sheets and the relatively higher evaporation rate.During the 12.5–8.0 Ma period, although topographic changes(uplift of Jishi Shan) decreased precipitation and strengthened aridification in the Xunhua basin on leeward slopes, the improved vegetation and climate conditions were probably controlled by the decrease in evaporation rates as a result of continuous cooling.From 8.0 to 5.0 Ma, the rapid development of the desert steppe can be attributed to global cooling and uplift of the Tibetan Plateau.  相似文献   

14.
莺歌海盆地和琼东南盆地常被合称为莺琼盆地,但二者的天然气成藏条件明显不同,莺歌海盆地第三-第四系巨厚,老第三纪崖城组和陵水组强烈过成熟,有效源岩为新第三纪三亚组和梅山组,而琼东南盆地的主要源岩为崖城组和陵水组,上第三系的生烃强度较低;尽管莺歌海盆地和琼东南盆地均为超压盆地,但莺歌海盆地强超压和右旋张扭应力场的共同作用导致超压囊顶部破裂并发育底辟,实现了超压流体包括天然气的垂向集中排放,而琼东南盆地总体上仍为侧向分散流体系统。莺歌海盆地的重要勘探领域是与底辟有关的圈闭,而琼东南盆地的主要勘探领域应为与下第三系源岩具有良好输导通道的上第三系岩性-构造复合圈闭或下第三系构造圈闭。  相似文献   

15.
青海循化盆地新近纪磁性地层学   总被引:4,自引:4,他引:0  
青藏高原东北部是研究高原隆升和东亚季风演化的重要地区.通过对青藏高原东北部循化盆地西沟剖面新近纪河湖相沉积的磁性地层学研究, 建立了西沟剖面约14.6~5.0 Ma沉积物的磁极性年代框架.沉积相的分析表明, 循化盆地在约14.6~5.0 Ma期间总体上处于充填萎缩阶段.西沟剖面巨厚层砾岩首次出现的时间约为7.3 Ma前, 应是青藏高原东北部快速隆升的沉积响应.这与青藏高原在约8.0 Ma前快速隆升的时间相近, 进一步说明约8.0 Ma前青藏高原的构造隆升具有准同时性.   相似文献   

16.
UPLIFT AND DENUDATION AT SOUTHEAST MARGIN OF TIBET PLATEAU IN QUATERNARY  相似文献   

17.
MASS ACCUMULATION IN THE CENOZOIC HOH XIL BASIN,NORTHERN TIBET1 BarronEJ,WashingtonWM .Theroleofgeographicvariablesinexplainingpaleoclimates:ResultsfromCretaceousclimatemodelsensitivitystudies[J] ..JournalofGeophysicalResearch ,1984 ,89:12 6 7~ 12 79. 2 HayWW ,ShawCA ,WoldCN .Mass balancedpaleogeographicreconstructions[J] ..GeologischeRundschau,1989,78( 1) :2 0 7~ 2 4 2 . 3 LiuZhifei,WangChengshan .FaciesanalysisanddepositionalprocessesofCenozoicsed…  相似文献   

18.
INTRODUCTIONTheYinggehaiandQiongdongnanbasinsaretwoofthefourmajorTertiarybasinsdevelopedinthenortherncontinen-talshelfoftheSo...  相似文献   

19.
柴达木盆地是青藏高原内部最大的坳陷。柴达木盆地构造成因的研究, 可以揭示青藏高原形成机制和生长历史。本文分析了柴达木盆地区域地震勘探剖面, 得到如下认识:柴达木盆地一级构造为新生代宽缓复向斜, 其振幅和半波长分别从柴西的> 16km和~170km变化为柴东的 < 4km和~50km。褶皱首先在柴西贴近阿尔金断裂附近形成(65~50.5Ma), 并向柴东扩展(23.3Ma)。复向斜的形成与较老的柴北缘逆冲断层系(65~50.5Ma)和较年轻的柴南缘逆冲断层系(35.5~23.3Ma)有关。盆地内部新生代上地壳缩短作用, 由柴西的> 48%, 向柴东减小到 < 1%, 说明在柴西和柴东之间, 存在地壳加厚机制的渐进转换:柴西主要为上地壳缩短, 柴东主要为下地壳缩短。   相似文献   

20.
Qiongdongnan Basin is a Cenozoic rift basin located on the northern passive continental margin of the South China Sea. Due to a lack of geologic observations, its evolution was not clear in the past. However, recently acquired 2-D seismic reflection data provide an opportunity to investigate its tectonic evolution. It shows that the Qiongdongnan Basin comprises a main rift zone which is 50–100 km wide and more than 400 km long. The main rift zone is arcuate in map view and its orientation changes from ENE–WSW in the west to nearly E–W in the east. It can be divided into three major segments. The generally linear fault trace shown by many border faults in map view implies that the eastern and middle segments were controlled by faults reactivated from NE to ENE trending and nearly E–W trending pre-existing fabrics, respectively. The western segment was controlled by a left-lateral strike-slip fault. The fault patterns shown by the central and eastern segments indicate that the extension direction for the opening of the rift basin was dominantly NW–SE. A semi-quantitative analysis of the fault cut-offs identifies three stages of rifting evolution: (1) 40.4–33.9 Ma, sparsely distributed NE-trending faults formed mainly in the western and the central part of the study area; (2) 33.9–28.4 Ma, the main rift zone formed and the area influenced by faulting was extended into the eastern part of the study area and (3) 28.4–20.4 Ma, the subsidence area was further enlarged but mainly extended into the flanking area of the main rift zone. In addition, Estimates of extensional strain along NW–SE-trending seismic profiles, which cross the main rift zone, vary between 15 and 39 km, which are generally comparable to the sinistral displacement on the Red River Fault Zone offshore, implying that this fault zone, in terms of sinistral motion, terminated at a location near the southern end of the Yinggehai Basin. Finally, these observations let us to favour a hybrid model for the opening of the South China Sea and probably the Qiongdongnan Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号