首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蒸散发是水循环的关键环节, 是水量平衡的重要组成部分. 由于在高寒山区进行长期野外观测的难度较大, 导致对区域实际蒸散发的认识不清, 从而无法明确区域水资源分配与不同植被的生态水文功能. 在天山山区, 高寒草甸占其总面积近15%, 其对降水的调节作用巨大, 但目前高寒草甸的实际蒸散发量多用潜在蒸散发进行推算, 缺少实际观测数据. 2012年10月-2013年9月, 利用3个小型蒸渗仪观测了阿克苏河上游科其喀尔冰川综合考察站附近山区的高寒草甸的实际蒸散量, 并尝试利用最小二乘支持向量机(LS-SVM)估算实际蒸散发. 结果表明:研究区高寒草甸全年内实测蒸散量511.3 mm, 日均蒸散量为1.4 mm·d-1; 在不同时期, 蒸散量变化剧烈, 冻结期、生长前期、生长期和生长后期的蒸散量分别为53.9、41.0、363.8和52.6 mm, 分别占全年蒸散量的10.5%、8.0%、71.2%和10.3%. 最小二乘支持向量机对实际蒸散发的估算精度较高, 对观测资料相对缺乏的高寒山区来说, 不失为一种较好的估算蒸散发方法.  相似文献   

2.
长江源区高寒生态与气候变化对河流径流过程的影响分析   总被引:24,自引:5,他引:19  
近40 a来长江源区气候变化剧烈,是青藏高原增温最为显著的地区之一,高寒生态系统与冻土环境不断退化.采用多因素逐次甄别方法与半经验理论方法相结合,基于多年冻土的不同植被覆盖降水-径流观测场观测试验结果,分析了长江源区气候-植被-冻土耦合系统中各要素变化对河川径流的不同影响.结果表明:近40 a来长江源区河川径流呈持续递减趋势,年均径流量减少了15.2%,频率>20%的径流量均显著减少,而>550 m3·s-1的稀遇洪水流量发生频率增加;气候变化与高寒草甸覆盖变化对源区径流变化的影响较大,分别占5.8%和5.5%;气候与植被覆盖变化对径流的显著影响是与冻土耦合作用的结果,但冻土环境与冰川变化对径流的贡献尚不能准确评价.高寒沼泽湿地和高寒草甸生态系统对于源区河川径流的形成与稳定起到关键作用,这两类生态系统的显著退化是驱动河川径流过程中变差增大、降水-径流系数减少以及洪水频率增加的主要原因.保护源区高寒草甸与独特的高寒湿地生态,对于维护源区水涵养功能和流域水安全意义重大.  相似文献   

3.
青藏高原中部高寒草甸蒸散发特征及其影响因素   总被引:3,自引:2,他引:1  
蒸散发作为水量平衡和能量平衡的重要组成部分,其变化对于农业、生态和水文具有重要的影响。全球变暖导致青藏高原上冻土活动层加厚,改变大气和土壤的水热交换过程,为明确唐古拉多年冻土区的蒸散发在全球变暖大背景下的变化趋势,依托中国科学院冰冻圈国家重点实验室唐古拉站,利用小型称重式蒸渗仪的观测数据分析了2007-2013年蒸散发的变化特征及其影响因素。结果表明:2007-2013年草地生长季实际蒸散发总量呈现递增的趋势;在草地生长季内,草地生长中期的总蒸散量最大,生长初期的总蒸散量最小,但是日蒸散量则是在生长初期最大,生长后期最小;无降水日,草地的蒸散发主要受到净辐射和气温的影响,降雨日的蒸散发则主要受到净辐射和风速的影响。  相似文献   

4.
马宁 《地球科学进展》2021,36(8):836-848
青藏高原地表蒸散发是决定亚洲水塔水储量变化的关键要素.在快速升温背景下,长时间尺度的青藏高原地表蒸散发如何响应气候变化亟需深入探讨.以青藏高原两种典型高寒生态系统(草原和湿地)为研究对象,以野外观测和互补蒸散发模型为研究手段,利用常规气象资料驱动互补蒸散发模型,应用于青藏高原的典型资料稀缺地区,并就模拟结果进行验证评估,揭示了两种典型高寒生态系统近40年的蒸散发变化特征.结果 表明,校正参数后的非线性互补蒸散发模型可较为准确地模拟两种下垫面的蒸散发,亦即该模型在青藏高原资料稀缺区具有较好的应用潜力.1973-2013年,青藏高原典型高寒草原蒸散发呈不显著的增大趋势,而高寒湿地则以2.0 mm/a的速率显著增大.相关分析表明,高寒草原和湿地蒸散发的年际变化主要与水汽压(即空气湿度)有关.阶段性分析发现,1970s至1990s末期,两种生态系统蒸散发皆在波动中逐渐增大;而1997年以后,高寒草原和高寒湿地蒸散发的变化模式表现出明显差异:前者在波动中逐渐减小,后者则持续增大至2000s中期.造成这种差异的原因可归结为高寒湿地受冰川融水的影响,土壤含水量可维持在较高的水平,加之2000s高寒湿地的水汽压和日照时数增大,使得该时段内地表蒸散发仍呈增大之势,亦即上游的冰川融水对下游的湿地蒸散发有重要影响.结果 表明,空间距离较近的两种典型高寒生态系统,由于所受水源补给不同,局地蒸散发对气候变化的响应模式可能有较大差异.  相似文献   

5.
三江平原典型沼泽湿地能量平衡和蒸散发研究   总被引:2,自引:1,他引:1       下载免费PDF全文
基于涡度相关技术对三江平原典型沼泽湿地的水热通量进行了连续观测,研究沼泽湿地能量平衡和蒸散发的季节变化,确定观测期内沼泽湿地总蒸散量,并通过逐步回归方程估算沼泽湿地水面蒸发和植被蒸腾。结果表明,沼泽湿地的能量平衡具有明显的季节变化特征,总体看来,潜热通量是湿地的主要能量支出项,占净辐射的45.5%,感热通量和存储热通量分别占净辐射的27.9%和26.7%。2006年5~10月份沼泽湿地总蒸散量为310.6mm,月均日蒸散量最高值出现在7月。观测期内沼泽湿地水面蒸发量约为221mm,占总蒸散量的71%左右,植被蒸腾量则约占总蒸散量的29%,湿地蒸散发以水面蒸发为主。  相似文献   

6.
玛纳斯河流域气候干燥、蒸发强烈,准确估算蒸散发量对地下水资源评价及生态环境保护具有重要指导意义。以往蒸散发研究空间分辨率较低,已不能满足各水文地质分区景观格局演变引起的蒸散发细部变化研究,针对以往不足,文章基于SEBAL模型利用Landsat系列影像估算了近30年来玛纳斯河流域山前平原区蒸散发,并进一步探讨不同水文地质分区蒸散发时空分布特征及影响因素。结果表明,蒸散量空间分布按照水文地质分区呈现明显带状性,各水文地质分区日蒸散总量表现为戈壁带<荒漠带<绿洲带,时间尺度上全区蒸散总量呈上升趋势,且增大幅度逐渐变缓,各分区呈现绿洲带蒸散总量递增、戈壁带及荒漠带蒸散总量先减小后增大,各分区蒸散总量变化趋势是由各分区主地物类型蒸散量变化控制;通过对影响因素的分析可知日蒸散发量随气温的升高而升高,各地物日均蒸散发量与全区平均气温变化趋势一致;归一化植被指数与日蒸散发量在戈壁带与绿洲带呈现较好的正相关关系;地下水位埋深与日蒸散发量在绿洲带呈负相关,当地下水位埋深大于5. 5 m时,日蒸散发量趋于稳定。  相似文献   

7.
地表蒸散发是陆地水文循环的重要组成部分,分析蒸散量时空变化特征是深入了解干旱区水文过程的基础。由于银川平原缺乏区域尺度实际蒸散量的长期观测,很难得到长时间序列蒸散量的时空变化特征。基于MOD16A3地表蒸散量数据及研究区内气象站点实测数据,采用Theil Sen Median趋势度分析、MK突变检验及CA-Markov模型等方法,从时间与空间的角度分析2004—2019年银川平原地表蒸散量的变化特征及影响因素,预测2024年地表蒸散量的发展趋势。研究结果表明:2004—2019年银川平原蒸散量年际波动总体是增加趋势,MK突变检验结果显示2010年是蒸散量时序数据的突变点;银川平原实际蒸散量与潜在蒸散量空间分布格局、变化趋势均存在明显的差异性,蒸散量在近16年呈增加趋势,潜在蒸散量呈减少趋势,符合干旱区蒸散发互补相关理论。采用CA-Markov模型对2024年银川平原地表蒸散量未来发展趋势进行预测,模拟结果显示在未来5年银川平原蒸散量仍呈增加趋势;蒸散量的时空变化受气候与人类活动的共同影响,蒸散量与气温、降水、日照时数呈正相关,与相对湿度呈负相关,土地利用结构影响年蒸散量的空间格局,呈现出水田>旱田>林地>草地>荒漠的规律。  相似文献   

8.
长江源区不同植被覆盖下土壤水分对降水的响应   总被引:5,自引:0,他引:5  
土壤水分是连接气候变化和植被覆盖动态的关键因子,以长江源区北麓河一级支流左冒西孔曲典型小流域为研究对象,通过观测降水特征、植被覆盖情况、土壤特性、土壤水分变化、入渗过程以及蒸散发和凝结,分析了不同植被覆盖下土壤水分变化与降水之间的响应关系.结果表明:研究区内高寒草甸土壤水分对降水的响应存在十分明显的滞后现象,滞后时间较长;当植被退化较为严重时,20 cm深度范围内土壤水分对降水有一定响应,深层土壤比较干燥,对降水的响应微弱;在保持其原有植物建群和较高覆盖度时,土壤持水能力增强,深层土壤含水量明显提高,土壤水分变化剧烈,对降水的响应深度达到40 cm以下.较高的植被覆盖能有效改善土壤物理结构、提高土壤有机质含量,促进降水入渗.植物根系导致的较大孔隙优先流运动以及根系吸水作用影响了土壤水分对降水的响应和土壤水分的空间分布.不同植被覆盖度下,土壤水分的蒸散发与凝结具有明显差异,高覆盖度的高寒草甸土壤,蒸散发量较小,凝结水量较大.  相似文献   

9.
基于MOD16产品的淮河流域实际蒸散发时空分布   总被引:3,自引:0,他引:3  
杨秀芹  王磊  王凯 《冰川冻土》2015,37(5):1343-1352
蒸散发是陆面过程中的重要环节,联系着陆面水循环和地表能量平衡.淮河流域地处中国南北气候过渡带,对淮河流域实际蒸散量时空变化的研究,有助于深入理解中国气候过渡带水循环对全球气候变化的响应.应用遥感技术对淮河流域MOD16_ET数据进行精度验证,并分析2000-2014年淮河流域蒸散发时空分布特征.结果表明:MOD16_ET产品在淮河流域内的精度总体上符合要求;淮河流域多年平均蒸散发的空间分布整体上呈南高北低,季节蒸散量的空间分布与年蒸散量的空间分布大体一致;近15 a淮河流域平均的实际蒸散量变化范围为531.7~634.0 mm,且存在不显著的下降趋势,实际蒸散量的季节变化大致呈单峰型分布,且季节变化较为明显,夏季(257.2 mm) >春季(143.7 mm) >秋季(120.7 mm) >冬季(66.6 mm);淮河流域西北部,夏、秋、冬三季的季节蒸散量变化速率对年蒸散量变化速率的贡献较大;淮河流域东部,春季的蒸散量变化速率占年蒸散量变化速率的比重较大.研究结果对于淮河流域内水资源短缺问题的解决、有限水资源的合理利用以及旱涝灾害的监测和预警有着重要的意义.  相似文献   

10.
黑河流域山区植被带草地蒸散发试验研究   总被引:26,自引:6,他引:20  
利用Penman-Monteith(PM)、 ASCE-Penman-Monteith(ASCE-PM)和Priestley-Taylor(PT)公式以及两个小型蒸渗仪SW10与N6的实际观测,计算了黑河流域山区试验草地2002年夏季的蒸散发. PM与PT方法验证了其中的一个小型蒸渗仪SW10的蒸散量, 也能验证小型蒸渗仪N6的蒸散量. 研究表明, 这种小型蒸渗仪在测算内陆河山区草地蒸散量的适用性比较强. 热量平衡要素计算结果表明, 山区草地的热量主要消耗于蒸散发.  相似文献   

11.
三江源地区位于青海南部,是中国三大主要河流长江、黄河和澜沧江的源头汇水区,是中国海拔最高的天然湿地和面积最大的自然保护区。三江源地区生态环境脆弱,评估地下水蒸散量对该地区水循环和水资源量评价有重要作用,对生态环境保护也具有一定意义。基于中等分辨率的MODIS数据,利用表面能量平衡系统对三江源地区2001—2017年的区域蒸散量进行估算,并采用Sen+Mann-Kendall法分析其连续时间序列内的时空变化趋势,讨论其影响因素。结果表明:研究区蒸散量从2001年到2017年总体呈增长趋势;三个源区多年年平均蒸散量值表现为澜沧江源>黄河源>长江源的变化规律;三江源区超过62.62%的地区蒸散量变化呈显著增长趋势,轻微显著增长地区占28.03%,显著减小地区占比极少;蒸散量的变化主要受气候影响,与气温、降水量呈明显正相关关系,其确定系数分别为0.80、0.89;蒸散量与植被指数及土壤湿度也均呈明显正相关关系。  相似文献   

12.
淮河流域作为我国重要的粮食产地,其水资源利用情况具有很高的研究价值。利用MODIS蒸散发数据产品(MOD16/ET)、降水和气温时序数据以及土地利用数据,探讨了淮河流域2000—2014年蒸散量时空变化特征及其对气候变化、土地利用的响应。结果表明:淮河流域蒸散量在空间上表现为南高北低,蒸散量多年均值为589.1 mm,夏季最高,冬季最低。整体而言,淮河流域15年间蒸散量具有先增加后减少的趋势;趋势分析结果显示,31.4%的地区蒸散量呈显著或极显著减少趋势,5.4%的地区蒸散量呈显著或极显著增加趋势,63.2%的地区蒸散量无显著变化。从蒸散量的气候因子分区看,52.0%的区域表现为非气候因子驱动型,44.1%的地区为降水驱动型,双因子驱动型和气温驱动型范围很小,面积占比分别为2.4%、1.5%,表明人类活动对蒸散发的影响巨大。四种植被覆盖土地利用蒸散量均值表现为林地>水田>旱地>草地。根据2000—2014年土地利用转变引起蒸散量变化的统计结果,草地转变为水田时蒸散量明显增加,旱地转变为草地、林地转变为旱地后蒸散量明显减少。  相似文献   

13.
长江上游流域1961-2000年气候及径流变化趋势   总被引:23,自引:0,他引:23  
王艳君  姜彤  施雅风 《冰川冻土》2005,27(5):709-714
以长江上游流域及周边113个气象站1961-2000年的气象数据以及干流屏山、宜昌水文站的径流数据为基础,对40 a来的气温、降水、参照蒸散量和径流进行了趋势分析.长江上游流域大部分地区年平均温度呈现上升趋势,尤以1990年代的升温幅度最为显著,其中冬季的增温对年增温的贡献最大,增温区主要分布在长江源区及金沙江流域.长江上游流域年和冬季降水显著增加,年降水的增加主要由于夏季极端降水事件频率的增大,降水显著增加的区域主要分布在长江源区及金沙江流域.长江上游流域参照蒸散量呈显著的下降趋势,尤其是夏季参照蒸散量下降趋势最为显著,主要分布在川江流域.屏山站径流量表现为微弱增加趋势,而宜昌站径流量呈微弱下降趋势,这除了受人类活动的影响外,川江流域年降水量的下降是宜昌站径流量减少的主要原因.  相似文献   

14.
林楠  姜然哲  刘强  郭晓东  杨航  陈思 《中国地质》2021,48(5):1392-1407
分析地表蒸散发时空变化规律及驱动因素,对促进区域水资源的科学分配、做好生态系统水源保护具有重要意义。本文基于MOD16蒸散发遥感数据产品,采用趋势分析及显著性检验法,深入分析了近20年三江平原地表蒸散量的时空变化特征,根据Penman-Monteith公式选取与地表蒸散量(ET)相关的驱动因子,分析各驱动因子对地表蒸散量变化的影响,并构建岭回归统计模型,分析研究地表蒸散量变化的主要驱动因子及其相对贡献率。结果表明:近20年三江平原地表蒸散发(ET)年际起伏特征明显,整体呈上升趋势;研究区内91.53%的地区ET呈增加趋势,且ET分布的地域差异逐年缩小;年内ET呈单峰型周期性变化,季节差异性明显;研究区坡度对ET有正向影响,高程和风速对ET有负向影响;气温、日照时数、降水量及NDVIET均呈正相关性,其中降水量与ET相关性最为显著;构建岭回归驱动分析模型的决定系数R2为0.823,能够有效解释各驱动因素与ET的关系。模型计算结果表明:降水量和植被覆盖度对三江平原地表蒸散量影响较大,是影响地表蒸散量变化的主要驱动力。  相似文献   

15.
山东半岛2000~2014年蒸散发时空分异特征   总被引:1,自引:0,他引:1       下载免费PDF全文
季树新  常学礼  李鹏  宋雪燕 《水文》2017,37(6):84-90
蒸散发的时空格局分析对于合理利用水资源、水资源短缺问题的解决以及旱涝灾害预警和监测具有重要意义。基于山东半岛区域气象资料、MOD16遥感影像数据集及GIS背景信息,分析了山东半岛20002014年地表蒸散量的时空变化特征及趋势,并在年时间尺度上通过基于像元的相关分析法分析了蒸散量与降水和气温的相关性。研究结果表明:在研究时段内平均蒸散量年际波动较大,波动范围为397.9479.8mm,多年蒸散平均值为440.78mm;其中2003年和2008年蒸散量最大,分别超出平均值77.3mm和81.9mm。除水体、滨海湿地外,ET年平均值有明显的由东南向西北递减的特征,降水量和地表植被覆盖度的差异是其空间变异的主要因素。蒸散量与气象因素的相关分析表明,年平均降水量与蒸散量变化呈现明显的正相关关系(0.663),温度与蒸散量呈显著负相关关系(-0.143),NDVI与蒸散量相关性较弱(0.33)。  相似文献   

16.
利用GLEAM V3.3a实际蒸散发资料,评估了中国科学院地球系统模式(CAS-ESM2)对青藏高原蒸散发的模拟性能,并给出了模式对未来气候变化情景下高原蒸散发变化的预估.结果 表明:CAS-ESM2可以较好地模拟出青藏高原蒸散发的空间分布与季节循环特征,以及1981-2014年蒸散发的增加趋势,但趋势的幅值相对观测偏弱.未来预估试验结果显示,4种不同未来共享社会经济路径(SSPs)情景下青藏高原蒸散发均普遍增加,其中SSP585情景下的增加最为显著,且喜马拉雅山脉地区蒸散发的增加量值最大.相较于1995-2014年历史时期,年均蒸散发在2041-2060年增加46.3~65.8 mm,增幅为13.4%~19.0%;2081-2100年,年均蒸散发增加75.7~151.1 mm,增幅为21.7%~43.6%.影响蒸散发未来变化的因素具有区域性差异,高原中部和南部受气温变化影响更大,而柴达木盆地、羌塘高原中部受降水变化影响更大.  相似文献   

17.
流域内水循环各环节的水量及其时空分布是不断变化的,掌握流域水循环与水平衡状况是进行流域水资源合理开发利用的重要基础。以2000—2019年黑河流域水文显著变化期为研究时段,综合应用TRMM与GPM卫星观测的降水量、遥感估算的蒸散发量等数据并结合气象站点、水文站点等观测数据,对流域降水、蒸散发与径流等水循环要素的水平衡进行了分析。结果表明:祁连山区是主要产流区,向中游年均下泄水量约为45.11×108 m3。其中,消耗于中游的年均量约为29.92×108 m3,约占66%;补充下游的年均量约为15.19×108 m3,约占34%。民乐—张掖盆地是黑河中游水资源消耗的主要区域,年均消耗的上游来水和当地降水量达43.97×108 m3,约占中游消耗量的75%;中游农田蒸散发年均消耗水量约20.3×108 m3,占总消耗量的35%;上游区降水量增加是黑河干流出山口径流量增加的主因,对径流量增加的贡献率为96%,导致年均径流增加0.35×108 m3,潜在蒸散发对径流增加几乎没有贡献。根据目前黑河干流上游径流量变化与中游水资源消耗现状,如果未来水文周期变化导致上游径流减少,中下游用水矛盾凸显的风险较大。地表水循环遥感观测可作为流域水平衡分析的方法之一,分析流域地表水水资源的空间分布状况、揭示水资源变化趋势与原因,支撑水资源合理配置,陆面实际蒸散发是水平衡分析不确定性的主要来源,准确估测不同类型下垫面实际蒸散发量是提升分析可靠性的关键。基于互补相关的陆面实际蒸散发估算方法相对简单,但其中用于计算湿环境蒸散发量的Priestley-Taylor公式中乘性经验系数受地形影响空间变异很大,区域上采用统一数值会对结果造成不可忽视的影响。  相似文献   

18.
基于Budyko假设,考虑土壤水蓄变量因子,改进流域水热耦合平衡方程,验证了Budyko假设在松花江流域的适应性,分析了松花江流域实际蒸散发(ET_a)的时空变化特征及其驱动机制。主要结论如下:(1)以1995~2006年作为模型参数率定期,2007~2012年作为模型检验期,用P-ΔS代表陆面蒸散发的水分供应条件,结果表明,增加土壤水蓄变量因子,提高了模型对实际蒸散发的模拟精度。(2)在α=0.1的显著性水平下,1995~2012年各汇水区ET_a均没有趋势性变化;ET_a在空间上由西向东逐渐增加,存在明显的地带性。(3)降水对ET_a的贡献量空间变化与潜在蒸散发、降水、土壤水蓄变量对ET_a总贡献量空间变化一致,表明松花江流域的水分条件是影响实际蒸散发的主导因素。  相似文献   

19.
典型岩溶区潜在蒸散发变化及其影响因素   总被引:2,自引:0,他引:2  
蒸散发过程是联系大气过程和陆面水文过程的关键环节,对区域/流域水循环过程和水量平衡具有重要影响。岩溶区,地表生态环境脆弱,对气候变化响应敏感,蒸散发可能是联系大气、水、热交换和碳循环的关键生态水文过程。准确地估算蒸散发对于深入研究岩溶水循环响应气候变化、碳循环、生态修复等具有重要作用。本文选择典型岩溶区桂林市为研究对象,基于1951~2015年桂林市气象站逐日气象数据,采用Penman- Monterith方法计算了潜在蒸散发量,利用Mann- Kendall非参数检验法和相关性分析研究桂林市潜在蒸散发的变化趋势及其影响因素。研究结果表明,桂林市潜在蒸散发具有明显的年、年际和季节尺度变化特征。1951~2015年桂林市潜在蒸散发呈显著的减小趋势,变化速率为-8. 02 mm/10a;夏季、秋季和冬季潜在蒸散发呈下降趋势,而春季呈微弱的上升趋势;夏季潜在蒸散发的显著减小是影响年蒸散发下降的主要原因;桂林市潜在蒸散发在1967和2003年左右发生突变;通过Mann- Kendall趋势检验和相关性分析得出,桂林市平均气温、最高、最低气温呈显著的上升趋势,而风速、相对湿度、日照时数呈显著的下降趋势;日照时数是影响桂林市潜在蒸散发变化的主要因素,其次是风速。  相似文献   

20.
黑河流域山前绿洲灌溉农田蒸散发模拟研究   总被引:13,自引:3,他引:10  
基于Penman-Monteith蒸散公式, 应用土壤-植被-大气系统水分和能量传输理论对Shuttleworth-Wallace蒸散模型的参数进行改进, 得出解析计算农田作物蒸腾和土壤蒸发的双源模型. 对黑河流域山前绿洲农田春小麦生长期土壤蒸发、作物蒸腾以及总蒸散过程进行了模拟研究. 对模型的计算结果以田间观测和水量平衡方法进行验证, 误差目标NSE=0.98, 说明该模型用于农田蒸发和蒸腾的计算是合理的. 对影响蒸发和蒸腾的主导因子净辐射、叶面积指数、土壤含水量进行了相关性分析, 得出三者的变化对土壤蒸发、作物蒸腾的影响. 通过不同时期日蒸散发量变化特征的分析, 表明土壤、冠层两个界面对能量和水汽传输的交互影响效应显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号