首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The goal of this study was to analyze the relation between the behaviour of a clayey material at the macroscopic scale and its microfabric evolution. This may lead to a better understanding of macroscopic strain mechanisms especially the contractancy and dilatancy phenomena. The approach proposed in this paper is based on the study of clay particles orientation by SEM picture analysis after different phases of triaxial loading. In the initial state of the samples (one‐dimensional compression), the SEM observations highlight a microstructural anisotropy with a preferential orientation of the particles normal to the loading direction. During isotropic loading, densification of the clayey matrix occurs related to a random orientation of particles indicated by the term ‘depolarization’. In the earlier stages of constant σ3 drained triaxial path on slightly overconsolidated specimens, the microstructural depolarization seems to persist inside a macroscopic domain, in which only the volumetric strains due to the isotropic part of the stress tensor evolve. Then, a rotation mechanism of the particles towards preferred directions seems to be activated. The phenomenon appears directly linked to the evolution of the deviatoric part of the stress tensor. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Submicroscopic opaque particles from highly shocked granite-gneisses close to the core of the Vredefort impact structure have been investigated by means of micro-analytical techniques with high spatial resolution such as electron diffraction, orientation contrast imagery and magnetic force microscopy. The opaque particles have been identified as nano- to micro-sized magnetite that occur in several distinct modes. In one sample magnetite occurs along relict planar deformation features (PDFs) in quartz, generally accepted as typical shock lamellae. The magnetite particles along shock lamellae in quartz grains virtually all show uniform crystallographic orientations. In most instances, the groups of magnetite within different quartz grains are systematically misorientated such that they share a subparallel <101> direction. The magnetite groups of all measured quartz grains thus appear to have a crystallographic preferred orientation in space. In a second sample, orientations of magnetite particles have been measured in microfractures (non-diagnostic of shock) of quartz, albite and in the alteration halos, (e.g. biotite grains breaking down to chlorite). The crystallographic orientations of magnetite particles are diverse, with only a minor portion having a preferred orientation. Scanning electron microscopy shows that magnetite along the relict PDFs is invariably associated with other microcrystalline phases such as quartz, K-feldspar and biotite. Petrographic observations suggest that these microcrystalline phases crystallized from locally formed micro-melts that intruded zones of weakness such as microfractures and PDFs shortly after the shock event. The extremely narrow widths of the PDFs suggest that heat may have dissipated rapidly resulting in melts crystallizing relatively close to where they were generated. Magnetic force microscopy confirms the presence of magnetic particles along PDFs. The smallest particles, <5 μm with high aspect ratios 15:1 usually exhibit intense, uniform magnetic signals characteristic of single-domain magnetite. Consistent offsets between attractive and repulsive magnetic signals of individual single-domain particles suggest consistent directions of magnetization for a large proportion of particles. Received: 16 November 1998 / Accepted: 17 May 1999  相似文献   

3.
A methodical gravel-fabric analysis has been made based upon the measurement of orientation and form of 3,300 pebbles. The study was carried out in glaciofluvial deposits in the Randers-Djursland area, Denmark.It is demonstrated that particles with axial ratios less than 0.8 are usable in gravel-fabric analysis and that shape does not essentially affect the orientation. The fabric pattern is found to be independent of particle size but an upper size limit exists above which the particles cannot obtain a preferred orientation. Further it is shown that a significant preferred orientation of the a/b planes occurs only when the particle dip is greater than about 20°.  相似文献   

4.
This paper analyses the influence of grain shape and angularity on the behaviour of granular materials from a two‐dimensional analysis by means of a discrete element method (Contact Dynamics). Different shapes of grains have been studied (circular, isotropic polygonal and elongated polygonal shapes) as well as different initial states (density) and directions of loading with respect to the initial fabric. Simulations of biaxial tests clearly show that the behaviour of samples with isotropic particles can be dissociated from that of samples with anisotropic particles. Indeed, for isotropic particles, angularity just tends to strengthen the behaviour of samples and slow down either local or global phenomena. One of the main results concerns the existence of a critical state for isotropic grains characterized by an angle of friction at the critical state, a critical void ratio and also a critical anisotropy. This critical state seems meaningless for elongated grains and the behaviour of samples generated with such particles is highly dependent on the direction of loading with respect to the initial fabric. The study of local variables related to fabric and particle orientation gives more information. In particular, the coincidence of the principal axes of the fabric tensor with those of the stress tensor is sudden for isotropic particles. On the contrary, this process is gradually initiated for elongated particles. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
《Sedimentology》2018,65(3):842-850
Content and fluxes of ice‐transported sand‐sized and gravel‐sized, lithic particles in marine sediment cores are a common tool used to reconstruct glacial variability. Ice‐rafted debris data sets are currently acquired in several different and often time‐consuming ways, and within various grain‐size fractions. This article proposes a novel workflow using an automated method to count ice‐rafted debris to reduce analysis time and subjectivity. The described method is based on the instrument ‘Morphologi G3’ from Malvern Instruments Limited and includes all pre‐processing and post‐processing steps. This particle characterization tool is an automated microscope combined with a proprietary software package. In this study, the analysis was performed on the 150 to 1000 μ m fraction. If desired, grain counts can be carried out on the entire sand and silt fractions. However, this would result in a considerably greater turnover time. A total of 350 sediment samples from core MD99‐2283, taken on the upper continental slope at the southern part of the north‐east Atlantic margin, were counted with this automated method. In addition, a total of 161 samples were counted manually as a control on the reliability of the scanning. The comparison of automated versus manually counted biogenic and lithic material shows a convincing correlation between the two methods. The turnover time per automatically counted sample is around 20 min, the method requiring less experience and skills than manual counting. The results yield a promising, time‐saving new technique to achieve high‐resolution ice‐rafted debris counting records with acceptable error margins.  相似文献   

6.
The microstructures of two contrasting garnet grains are mapped using automated electron backscatter diffraction. In both cases there is a very strong crystallographic preferred orientation, with measurements clustered round a single dominant orientation. Each garnet grain is divided into domains with similar orientations, limited by boundaries with misorientations of 2° or more. In both samples most of misorientation angles measured across orientation domain boundaries are significantly lower than those measured between random pairs of orientation domains. One sample is a deformed garnet that shows considerable distortion within the domains. Lines of orientation measurements within domains and across domain boundaries show small circle dispersions around rational crystallographic axes. The domain boundaries are likely to be subgrain boundaries formed by dislocation creep and recovery. The second sample is a porphyroblast in which the domains have no internal distortion and the orientation domain boundaries have random misorientation axes. These boundaries probably formed by coalescence of originally separate garnets. We suggest that misorientations across these boundaries were reduced by physical relative rotations driven by boundary energy. The data illustrate the potential of orientation maps and misorientation analysis in microstructural studies of any crystalline material.  相似文献   

7.
New techniques to determine distributions of cleat aperture, cleat orientation and cleat spacing from CT scans have been developed. For cleat orientation and spacing distributions, two different coal blocks were scanned. The CT scans have been analyzed for the three orthogonal directions. Histograms of the cleat orientations are bimodal, expressing the typical cleat texture of face and butt cleats and bedding perpendicular relaxation fractures. Deviations up to 20° from the peak values in the cleat orientation distributions were used as input for automated image analysis of cleat spacing. Distributions of the cleat spacing measurements are related to the face and butt cleat directions. The term “relevant cleat length” is introduced as a measure to extract the amount of cleat length involved with the cleat spacing measurements. The ratio ranges from 0.03 to 0.38 and expresses the difference in cleat texture in both samples. Cleat spacing versus relevant cleat length shows sample specific patterns for face cleat, butt cleat and bedding. To describe cleat aperture quantitatively, peak height and missing attenuation have been used. The image of a cleat was seen as a convolution of a rectangular fracture profile with a Gaussian point spread function.  相似文献   

8.
The 3D shape, size and orientation data for white mica grains sampled along two transects of increasing metamorphic grade in the Otago Schist, New Zealand, reveal that metamorphic foliation, as defined by mica shape‐preferred orientation (SPO), developed rapidly at sub‐greenschist facies conditions early in the deformation history. The onset of penetrative strain metamorphism is marked by the rapid elimination of poorly oriented large clastic mica in favour of numerous new smaller grains of contrasting composition, higher aspect ratios and a strong preferred orientation. The metamorphic mica is blade shaped with long axes defining the linear aspect of the foliation and intermediate axes a partial girdle about the lineation. Once initiated, foliation progressively intensified by an increase in the aspect ratio, size and alignment of grains, although highest grade samples within the chlorite zone record a decrease in aspect ratio and reduction in SPO strength despite continued increase in grain size. These trends are interpreted in terms of progressive competitive anisotropic growth of blade‐shaped grains so that the fastest growth directions and blade lengths tend to parallel the extension direction during deformation. The competitive nature of mica growth is indicated by the progressive increase in size and resultant decrease in number of metamorphic mica with increasing grade, from c. 1000 relatively small mica grains per square millimetre of thin section at lower grades, to c. 100 relatively large grains per square millimetre in higher grade samples. Reversal of SPO intensity and grain aspect ratio trends in higher grade samples may reflect a reduction in the strain rate or reduction in the deviatoric component of the stress field.  相似文献   

9.
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism <c> slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.  相似文献   

10.
Although analysis of clast macrofabrics has been used to differentiate between different types of glacial diamictons and to determine palaeo‐ice flow directions, no account appears to have been made of preferred clast orientations inherited from the parental source material. Clast macrofabrics in tills are typically interpreted as having developed in response to an imposed subglacial deformation and as such provide a link between the sedimentary record and glacier dynamics. They rely on the assumption that any preferred clast orientation is a result of deformation/flow. The results of the micromorphological study of the Langholm Till exposed at North Corbelly near Dumfries (southwestern Scotland) clearly demonstrate that bedrock structure can influence clast orientation (macrofabric) within diamictons. In the lower part of the till, the orientation of elongate clasts preserves the geometry of the tectonic cleavage present within the underlying bedrock. The intensity of this steeply inclined, ‘inherited’ clast fabric decreases upward through the till, to be replaced by a more complex pattern of successive generations of clast microfabrics developed in response to deformation/flow. These results indicate potential limitations of applying clast macrofabric or microfabric analysis in isolation to establish till genesis or palaeo ice‐flow directions. Consequently, due account should be made of other glacial palaeo‐environmental and ice flow indicators, as well as rockhead depth and morphology in relation to the selection of fabric measurements sites. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

11.
The degree of preferred orientation of clay minerals in a series of fifteen fine-grained sediments has been precisely measured by transmitted X-ray goniometry. This varies systematically with quartz content. By contrast it is apparently unrelated to fissility since the one fissile sample (a ‘paper shale’) occurs at the mid-point of the sample series ranked in order of degree of preferred orientation. In this series fissility corresponds with the presence of fine-scale lamination. Estimates of compaction strain using the theory of March (1932) and assuming random initial clay orientation are consistent with the view that these samples started life with porosities similar to those of present-day muddy sediments. On this basis it is concluded that preferred orientation in clay-rich sediments results almost entirely from compaction strain. The degree to which this can be attained is limited by the presence of nonplaty particles (such as quartz grains) which prevent planar fabric development in their immediate vicinity.  相似文献   

12.
By vertical seismic profiling and shear wave analysis we show that a packet of carbonate reservoir rocks, found at nearly 3000 m depth in the North German Basin, is seismically anisotropic. For vertical paths of wave propagation the estimated velocity difference of the split shear waves is 10%. No shear wave birefrigence is observed within the hangingwall which, therefore, has to be regarded as isotropic or transversely isotropic. Additional laboratory investigations of the petrography of drilled carbonate samples and of their seismic velocities show that the anisotropy is most probably caused by subvertical fractures with preferred azimuthal orientation. The strike direction of the aligned fractures determined by analysis of split shear waves is approximately N55°E. This value agrees with recently published directions of maximum horizontal tectonic stress in pre-Zechstein sediments in the eastern part of the North German Basin, but it is in contrast to the world stress map. Received: 20 April 1999 / Accepted: 25 August 1999  相似文献   

13.
The elastic properties of polycrystalline as well as single crystal MgO have been measured extensively. New measurements on four hot-pressed magnesium oxide samples are presented and compared to existing data. Discrepancies are noted between the properties determined for the different polycrystalline MgO samples; the magnitude of these differences is as much as ±6% for the reported bulk modulus. X-ray and electron microscopy techniques were applied to the four hot-pressed specimens and revealed the presence of residual strains, plastic deformation and a preferred orientation of grains with respect to hot pressing directions. Scanning electron micrographs also indicated that a non-homogeneous pore distribution existed. The results suggest that the data obtained from polycrystalline materials may not truly reflect the intrinsic elasticity of the material but rather some combination of the elasticity of the material and the state of aggregation of the polycrystal.  相似文献   

14.
地球内核与地球深部动力学   总被引:11,自引:2,他引:9  
地球内核由外核富含铁元素的液态物质结晶而成。经证实,内核正以约1(°)/a的速率相对于地幔向东转动。内核的旋转是通过穿过内核的地震波的走时随时间变化推测得到的。这种变化是最近十多年来揭示出的内核各向异性在空间方位的改变所造成。内核的各向异性被认为起因于各向异性的铁晶体的有序排列,但这种有序排列的机制还不清楚。内核在地球发电机中起着重要的作用。利用大型的并行计算机,人们已得到能产生像地磁场一样的三维发电机数值模拟。地震学观测到的内核差速旋转为最近的发电机数值模拟提供了支持。这种数值模拟曾预测:导体内核与外核产生的磁场的电磁耦合驱动了内核每年几度向东旋转。地核通过核幔边界的接触及内核与地幔的引力耦合与地幔存在强烈的相互作用。多学科领域的突破为认识地球的深部动力过程提供了极好的机会和手段。  相似文献   

15.
Techniques have been developed to prepare reasonably homogeneous, reproducible bulk samples of a kaolinite clay (Hydrite 10) with predetermined microfabrics and to reliably identify these microfabrics both quantitatively and qualitatively. Eight samples with quite diverse histories were produced in the laboratory by controlling the chemistry of the clay-water system, the consolidation stress path (either isotropic or anisotropic), and the magnitude of the consolidation stresses. The fabrics of these samples are identified and quantified by the combined use of scanning electron microscopy, optical microscopy, and X-ray diffractometry, and reasonably comprehensive appraisals of particle associations and orientation are obtained. Anisotropic consolidation was found to induce a preferred particle orientation, whereas isotropic consolidation tended to provide basically random samples. The anisotropically consolidated samples from dispersed slurries exhibited somewhat greater particle orientation than those from flocculated slurries, and, although considerable particle orientation occurred at low values of the consolidation stress, increases in the major principal consolidation stress did accentuate the particle orientation. The presence of domains or small groups of particles is suggested in certain samples, especially in those consolidated isotropically.  相似文献   

16.
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth’s interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ?=?7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700–1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3–6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of ~?4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.  相似文献   

17.
This work contributes to the experimental investigations of the origin and 3-D orientation of micropores in low porosity crystalline rocks. The origin and spatial orientation of microporosity in two eclogites with different microstructures were studied by 1) quantitative and qualitative microstructural analysis of grains and grain boundaries, 2) measurement of lattice preferred orientation using the SEM-EBSD method and 3) experimental measurement of velocity of elastic P-waves in spherical samples in 132 directions under confining pressures up to 400 MPa. Results show good correlation between the elastic properties and the orientation of grain boundaries and cleavage planes in clinopyroxene. The magnitude and anisotropy of velocity change with pressure shows that microporosity in the fine-grained sample is relatively large and strongly preferentially oriented, whereas it is significantly lower and less preferentially oriented in the coarse-grained sample. Seeing that the lattice preferred orientation of clinopyroxene is similar in both samples we can deduce from velocity changes that the grain size of the rock forming minerals controls the amount of microporosity. Also, the orientation of microporosity depends mostly on preferred orientation of grain boundaries and somewhat less on the orientation of cleavage planes. Grain boundaries are therefore the most important contributors to the bulk microporosity in the studied rocks.  相似文献   

18.
With optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and synchrotron X-ray diffraction measurements, we analyzed clay microfabrics in ultracataclastic/gouge and cataclastic core samples obtained from the main bore hole of the San Andreas Fault observatory at depth (SAFOD). The analysis reveals a significant contrast between weak clay fabrics observed in the core samples with synchrotron X-ray fabric measurements and strong degree of preferred alignment for clay particles documented with the optical microscope. TEM and SEM observations also show distinct zones of locally aligned and randomly oriented clay minerals. The lack of a strong fabric may be attributed to randomly oriented matrix sheet silicates dominating the fault rocks. The presence of weak fabrics in intensely strained ultracataclasites/fault gouges is attributed to 1) newly formed clay minerals that grew in many orientations, 2) folded and kinked clay minerals, and 3) clay particles that are wrapped around grains. In addition, the locally aligned clay particles may act as barriers to fluid flow, which in turn decrease porosity, expel intergranular pore fluids, and consequently, may increase fluid pressure.  相似文献   

19.
合成氟金云母多型种类与含量对云母的物理化学性质具有重要的影响。然而在X射线粉晶衍射(XRD)制样过程中云母00l基面极易产生择优取向,严重制约了云母多型组成和含量的分析。传统撒样法可促使晶体取向随机分布,但制备的试样表面不够平坦。本文对传统撒样法进行改进,在撒样过程中使样品架均匀旋转,从而获得表面平坦的试样。XRD测试结果表明,旋转撒样法取向指数(OI=I_(001)/I_(060))为3.9,与无择优取向的理论值4.5接近,明显优于正压法和侧装法(OI值分别为38.7和18.1),表明旋转撒样法能够显著减弱云母择优取向。这主要是由于旋转撒样法使晶体颗粒之间形成犬牙交错分布,提高了云母各晶面随机分布概率。Rietveld全图拟合分析显示,旋转撒样法获得的XRD数据精修效果较好,计算出本文合成的氟金云母样品中1M和2M_1多型含量分别为86%和14%,8个工业合成的氟金云母样品中1M和2M_1多型含量分别为57%~72%和28%~43%,并且存在较多的堆垛层错。总之,旋转撒样法减弱择优取向效果显著,为研究云母晶体生长、多型成因以及结构与性能之间的关系提供了技术支撑。  相似文献   

20.
洪勃  李喜安  王力  孙建强  简涛  孟杰 《中国地质》2021,48(3):900-910
土颗粒的形状及其空间方位的择优取向是导致宏观土体各向异性的重要原因之一。以具有明显各向异性的晚更新世马兰黄土为研究对象,借助Quanta FEG型电子显微镜扫描照片所包含的相关信息,揭示其微结构在水平向和垂直向上的差异,并对该微观结构的各向异性成因进行了分析。发现:(1)水平向和垂直向切片中颗粒的圆形度R_0具有正态分布特征,无论垂直向还是水平向土壤颗粒均以次圆形、圆形和非常圆颗粒为主。(2)水平方向切片中颗粒的方位角具有一定的WN-ES的优势方向,而垂直向切片中土颗粒的长轴有与地面平行的优势取向,且埋深越深这种趋势越明显。(3)水平切片中土颗粒的各向同性性质更为显著,而垂直向切片中颗粒的各向异性性质更为突出,且随埋深的增加,各向异性增强。(4)水平向和垂直向切片中颗粒总的概率分布基本表现为随机分布,粉粒在数量上占绝对优势是导致这种无序分布的重要原因,相对于粉粒而言细砂则可在一定程度上体现其排列具有方向性。分析表明,颗粒的方位角和各向异性率对黄土微观各向异性具有较好的指示作用。同时,颗粒的方向性对黄土高原的古气候也具有重要研究意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号