首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Hatu, Qi-III, and Qi-V gold deposits in the Hatu–Baobei volcanic–sedimentary basin (west Junggar, Xinjiang) represent the proximal, middle, and distal parts of the Hatu gold district, respectively. Orebodies of these deposits mainly consist of Au-bearing quartz veins and altered host rocks with disseminated sulfide minerals. Six types of pyrite in these mines are studied here to illustrate ore-formation processes. Sedimentary pyrite, including framboidal and fine-grained pyrite, occurs in mudstone-bearing sedimentary rocks or altered volcanic–sedimentary rocks. Framboidal pyrite formed during redox changes in sedimentary layers. Hydrothermal pyrite contains five subgroups, from Py1 to Py5. Porous Py1 formed prior to gold mineralization, and is overgrown by Py2 that contains inclusions of sulfide minerals and native gold. Coarser Py3 coexists with arsenopyrite and native gold, and contains the greatest As concentrations. Gold and antimony are also preferentially concentrated in arsenian Py2 and Py3. The Au–As-deficient Py4 and Py5 formed during the post-ore process. There is a negative correlation between the As and S contents in Py1, Py2, and Py3, implying the substitution of sulfur by arsenic. Gold precipitated under relatively reducing condition in framboid- and graphite-bearing tuffaceous rocks. Cesium, Rb, Sr, La, Ce, Au, As, Sb, Cu, and Pb are concentrated in altered host rocks. The Au-bearing quartz veins and disseminated sulfide mineral orebodies were formed via a co-genetic hydrothermal fluid and formed during different stages. The variation of fO2 during fluid/rock interactions, and crystallization of arsenian pyrite were major factors that controlled gold precipitation.  相似文献   

2.
在胶东莱州吴一村地区完成的3266.06 m深钻,是目前焦家金成矿带最深见矿钻孔,研究钻孔揭露的深部矿石中金矿物及黄铁矿微量元素特征,对探讨深部成矿作用演化具有重要意义。笔者采取深钻中2420~3206 m垂深的岩(矿)芯样品进行了详细的岩相学和矿相学研究,结合扫描电镜和电子探针微区分析,研究了矿石中金矿物的赋存状态和成分。对不同成矿阶段形成的黄铁矿进行了LA-ICPMS微量元素分析。研究结果表明,深部矿石中载金矿物主要为黄铁矿,其次为石英、黄铜矿、方铅矿,可见金主要以自然金和银金矿的形式存在,以晶隙金和裂隙金为主,其次为包体金。与浅部金矿床比较,深部金的成色较高。黄铁矿分为6种类型,第Ⅰ成矿阶段形成富Co型黄铁矿Py1,第Ⅱ成矿阶段形成富Ni型黄铁矿Py2a和Py2b,第Ⅲ成矿阶段形成富Au、As型黄铁矿Py3a和富Au、Ag、Pb、Bi型黄铁矿Py3b,第Ⅳ成矿阶段形成贫微量元素黄铁矿Py4。其中,Py1和Py2a发生强烈破碎,裂隙表面对热液中的Au络合物产生吸附作用,对金沉淀富集起重要作用。黄铁矿中Co、Ni、As等微量元素主要以类质同象形式赋存,而Au、Ag、Cu、Pb、Zn、Bi等主要以纳米级、微米级矿物包体形式赋存。Pb+Bi、Cu+Pb+Zn、Te+Bi与Au+Ag呈明显正相关,而Au与As相关性较差。黄铁矿中Co、Ni含量较低,而Au+Ag+As或Au+Ag+Pb+Bi+Cu含量较高指示成矿有利。另外,黄铁矿中Co、Ni含量较高,并且破碎强烈,成矿相关元素含量较高也指示成矿有利。  相似文献   

3.
曲家金矿位于我国重要的蚀变岩型金矿矿集区之焦家金矿带的中段,矿床赋存标高为-726~-1 334 m。为研究黄铁矿的演化及其对金成矿过程的指示,运用LA-ICP-MS分析黄铁矿原位微量元素含量,结合岩相学观察和点群分析对黄铁矿进行了分类。发现黄铁矿中Co、Ni、As等微量元素主要以类质同像形式赋存,而Au、Ag、Cu、Zn、Pb、Bi等元素主要以纳米级、微米级矿物包裹体形式赋存。黄铁矿主要分为5种类型:富Co型Py1,富Ni型Py2,富Au、As型Py3,富Au、Ag、Pb、Bi型Py4及“干净”型Py5。黄铁矿微量元素特征指示成矿物质可能主要来源于前寒武纪变质基底岩石和中生代岩浆岩,少量来源于地幔,成矿热液可能属变质热液、岩浆热液和浅部大气降水的混合成因。不同类型黄铁矿反映成矿热液由富Co、Ni经富As、Au向富Pb、Bi、Au、Ag演化。Py1和Py2形成后受构造活动影响发生强烈破碎,裂隙表面对热液中金络合物增强的吸附作用促使金在裂隙中沉淀,对金的富集成矿可能起重要作用。Co、Ni含量较低,同时Au、Ag、As、Pb、Bi等元素含量较高的黄铁矿与成矿作用有密切关系。另外,黄铁矿中C...  相似文献   

4.
Six epizonal gold deposits in the 30-km-long Yangshan gold belt, Gansu Province are estimated to contain more than 300 t of gold at an average grade of 4.76 g/t and thus define one of China's largest gold resources. Detailed paragenetic studies have recognized five stages of sulfide mineral precipitation in the deposits of the belt. Syngenetic/diagenetic pyrite (Py0) has a framboidal or colloform texture and is disseminated in the metasedimentary host rocks. Early hydrothermal pyrite (Py1) in quartz veins is disseminated in metasedimentary rocks and dikes and also occurs as semi-massive pyrite aggregates or bedding-parallel pyrite bands in phyllite. The main ore stage pyrite (Py2) commonly overgrows Py1 and is typically associated with main ore stage arsenopyrite (Apy2). Late ore stage pyrite (Py3), arsenopyrite (Apy3), and stibnite occur in quartz ± calcite veins or are disseminated in country rocks. Post-ore stage pyrite (Py4) occurs in quartz ± calcite veins that cut all earlier formed mineralization. Electron probe microanalyses and laser ablation-inductively coupled plasma mass spectrometry analyses reveal that different generations of sulfides have characteristic of major and trace element patterns, which can be used as a proxy for the distinct hydrothermal events. Syngenetic/diagenetic pyrite has high concentrations of As, Au, Bi, Co, Cu, Mn, Ni, Pb, Sb, and Zn. The Py0 also retains a sedimentary Co/Ni ratio, which is distinct from hydrothermal ore-related pyrite. Early hydrothermal Py1 has high contents of Ag, As, Au, Bi, Cu, Fe, Sb, and V, and it reflects elevated levels of these elements in the earliest mineralizing metamorphic fluids. The main ore stage Py2 has a very high content of As (median value of 2.96 wt%) and Au (median value of 47.5 ppm) and slightly elevated Cu, but relatively low values for other trace elements. Arsenic in the main ore stage Py2 occurs in solid solution. Late ore stage Py3, formed coevally with stibnite, contains relatively high As (median value of 1.44 wt%), Au, Fe, Mn, Mo, Sb, and Zn and low Bi, Co, Ni, and Pb. The main ore stage Apy2, compared to late ore stage arsenopyrite, is relatively enriched in As, whereas the later Apy3 has high concentrations of S, Fe, and Sb, which is consistent with element patterns in associated main and late ore stage pyrite generations. Compared with pyrite from other stages, the post-ore stage Py4 has relatively low concentrations of Fe and S, whereas As remains elevated (2.05~3.20 wt%), which could be interpreted by the substitution of As? for S in the pyrite structure. These results suggest that syngenetic/diagenetic pyrite is the main metal source for the Yangshan gold deposits where such pyrite was metamorphosed at depth below presently exposed levels. The ore-forming elements were concentrated into the hydrothermal fluids during metamorphic devolatilization, and subsequently, during extensive fluid–rock interaction at shallower levels, these elements were precipitated via widespread sulfidation during the main ore stage.  相似文献   

5.
Geological and structural conditions of localization, hydrothermal metasomatic alteration, and mineralization of the Petropavlovskoe gold deposit (Novogodnenskoe ore field) situated in the northern part of the Lesser Ural volcanic–plutonic belt, which is a constituent of the Middle Paleozoic island-arc system of the Polar Urals, are discussed. The porphyritic diorite bodies pertaining to the late phase of the intrusive Sob Complex play an ore-controlling role. The large-volume orebodies are related to the upper parts of these intrusions. Two types of stringer–disseminated ores have been revealed: (1) predominant gold-sulfide and (2) superimposed low-sulfide–gold–quartz ore markedly enriched in Au. Taken together, they make up complicated flattened isometric orebodies transitory to linear stockworks. The gold potential of the deposit is controlled by pyrite–(chlorite)–albite metasomatic rock of the main productive stage, which mainly develops in a volcanic–sedimentary sequence especially close to the contacts with porphyritic diorite. The relationships between intrusive and subvolcanic bodies and dating of individual zircon crystals corroborate a multistage evolution of the ore field, which predetermines its complex hydrothermal history. Magmatic activity of mature island-arc plagiogranite of the Sob Complex and monzonite of the Kongor Complex initiated development of skarn and beresite alterations accompanied by crystallization of hydrothermal sulfides. In the Early Devonian, due to emplacement of the Sob Complex at a depth of approximately 2 km, skarn magnetite ore with subordinate sulfides was formed. At the onset of the Middle Devonian, the large-volume gold porphyry Au–Ag–Te–W ± Mo,Cu stockworks related to quartz diorite porphyry—the final phase of the Sob Complex— were formed. In the Late Devonian, a part of sulfide mineralization was redistributed with the formation of linear low-sulfide quartz vein zones. Isotopic geochemical study has shown that the ore is deposited from reduced, substantially magmatic fluid, which is characterized by close to mantle values δ34S = 0 ± 1‰, δ13C =–6 to–7‰, and δ18O = +5‰ as the temperature decreases from 420–300°C (gold–sulfide ore) to 250–130°C (gold–(sulfide)–quartz ore) and pressure decreases from 0.8 to 0.3 kbar. According to the data of microanalysis (EPMA and LA-ICP-MS), the main trace elements in pyrite of gold orebodies are represented by Co (up to 2.52 wt %), As (up to 0.70 wt %), and Ni (up to 0.38 wt %); Te, Se, Ag, Au, Bi, Sb, and Sn also occur. Pyrite of the early assemblages is characterized by high Co, Te, Au, and Bi contents, whereas the late pyrite is distinguished by elevated concentrations of As (up to 0.7 wt %), Ni (up to 0.38 wt %), Se (223 ppm), Ag (up to 111 ppm), and Sn (4.4 ppm). The minimal Au content in pyrite of the late quartz–carbonate assemblage is up to 1.7 ppm and geometric average is 0.3 ppm. The significant correlation between Au and As (furthermore, negative–0.6) in pyrite from ore of the Petropavlovskoe deposit is recorded only for the gold–sulfide assemblage, whereas it is not established for other assemblages. Pyrite with higher As concentration (up to 0.7 wt %) is distinguished only for the Au–Te mineral assemblage. Taking into account structural–morphological and mineralogical–geochemical features, the ore–magmatic system of the Petropavlovskoe deposit is referred to as gold porphyry style. Among the main criteria of such typification are the spatial association of orebodies with bodies of subvolcanic porphyry-like intrusive phases at the roof of large multiphase pluton; the stockwork-like morphology of gold orebodies; 3D character of ore–alteration zoning and distribution of ore components; geochemical association of gold with Ag, W, Mo, Cu, As, Te, and Bi; and predominant finely dispersed submicroscopic gold in ore.  相似文献   

6.
三山岛金矿床是位于胶东金矿集区西北部的超大型破碎带蚀变岩型金矿床.该矿床细致的矿相学及元素地球化学研究尚有不足,限制了对其金富集机制及过程的理解.基于野外地质调查和室内矿相学研究将该矿床划分为4个成矿阶段:石英?绢云母?黄铁矿阶段(I)、石英?金?黄铁矿阶段(I I)、石英?金?多金属硫化物阶段(I I I)和碳酸盐?...  相似文献   

7.
Proterozoic orogens commonly host a range of hydrothermal ores that form in diverse tectonic settings at different times. However, the link between mineralization and the regional-scale tectonothermal evolution of orogens is usually not well understood, especially in areas subject to multiple hydrothermal events.Regional-scale drivers for mineral systems vary between the different classes of hydrothermal ore, but all involve an energy source and a fluid pathway to focus mineralizing fluids into the upper crust. The Mount Olympus gold deposit in the Proterozoic Capricorn Orogen of Western Australia, was regarded as an orogenic gold deposit that formed at ca. 1738 Ma during the assembly of Proterozoic Australia. However,the trace element chemistry of the pyrite crystals closely resembles those of the Carlin deposits of Nevada,with rims that display solid solution gold accompanied by elevated As, Cu, Sb, Hg, and Tl, surrounding gold-poor cores. New SHRIMP UeP b dating of xenotime intergrown with auriferous pyrite and ore-stage alteration minerals provided a weighted mean~(207) Pb*/~(206) Pb* date of 1769 ± 5 Ma, interpreted as the age of gold mineralization. This was followed by two discrete episodes of hydrothermal alteration at 1727 ± 7 Ma and 1673 ± 8 Ma. The three ages are linked to multiple reactivation of the crustal-scale Nanjilgardy Fault during repeated episodes of intracratonic reworking. The regional-scale drivers for Carlin-like gold mineralization at Mount Olympus are related to a change in tectonic regime during the final stages of the intracratonic 1820 -1770 Ma Capricorn Orogeny. Our results suggest that substantial sized Carlin-like gold deposits can form in an intracratonic setting during regional-scale crustal reworking.  相似文献   

8.
藏南查拉普金矿床载金矿物特征与金的赋存状态   总被引:1,自引:0,他引:1  
黄铁矿和毒砂是卡林型和造山型金矿床重要的载金矿物。文章通过电子探针(EPMA)分析研究了藏南查拉普金矿床不同类型黄铁矿和毒砂中Au、As、S、Fe等元素的含量变化和分布规律,发现不同阶段的黄铁矿具有不同的结构特征和元素组成特点。沉积成岩期黄铁矿(Py1)主要呈草莓状、胶状,常构成环带状黄铁矿的核心,其中金的含量最高,显示了金在沉积成岩期的大量富集。热液期早阶段黄铁矿(Py2)主要呈自形-半自形的立方体,与Py1元素(S、Fe、As)组成相近,显示了一定的继承演化关系。热液期主阶段黄铁矿(Py3)与毒砂共生,多呈自形-半自形的五角十二面体、立方体,常包裹早期的黄铁矿形成环带结构。Py3中As的含量明显升高,其增加量近似等于S的减少量,说明As主要进入黄铁矿晶格替代了S的位置。各个阶段的黄铁矿和毒砂中Au的分布在EPMA微束的分辨率下均显示是不均匀的,Au在Py1和大部分Py2中主要以纳米级自然金(Au0)的形式存在;而在Py3中主要以(Au+)的形式存在,少部分以纳米级自然金(Au0)形式存在。Py1的结构及元素组成与典型卡林型金矿和造山型金矿沉积成岩期黄铁矿的特点相似,而Py3的大量发育则符合卡林型金矿的特征。  相似文献   

9.
The Southern Great Xing'an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ~(34)S_(cDT) values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ~(34) S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.  相似文献   

10.
The Woxi Au-Sb-W deposit is one of the largest polymetallic ore deposits in the Xuefengshan Range, southern China, hosted in low-grade metamorphosed Neoproterozoic volcaniclastic rocks. The orebodies of the deposit are predominantly composed of banded quartz veins, which are strictly controlled by bedding and faults. Petrographic observations and geochemical results are reported on the occurrence of Au and properties of the ore-forming processes for different stages in the deposit. The veins extend vertically up to 2 km without obvious vertical metal zoning. The ore-forming process can be subdivided into four mineralization stages: Pre-ore stage; Early stage (scheelite-quartz stage); Middle stage (pyrite-stibnite-quartz stage); and Late stage (stibnite-quartz sage). Four types of pyrite (Py0, Py1, Py2, and Py3) were identified in the ores and host-rock: Py0 occurs as euhedral grains with voids in the core, ranging in size from 50 to 100 μm and formed mainly in the Pre-ore stage and Early stage; Py1 occurs as subhedral grains. Small grains (around 10 μm) of Py1 form irregularly shaped clusters of variable size ranging from tens to hundreds of μm and mainly formed in the Middle stage; Euhedral-subhedral fine-grained Py2 formed in the Late stage; Minor subhedral fine-grained Py3 was deposited in the Late-stage. Stibnite is widely distributed in the Middle and Late stage ore veins. No systemic difference was recognized in mineralogical features among stibnite formed in different stages. In addition to native gold, the lattice bound Au+1 widely exists in Py1 and Py2 in the deposit, and widespread Py1 is considered as the main Au-bearing mineral with the highest Au contents. Most elements (such as Co, Ni, Cu, As, Sb, Ba, and Pb) are considered to occur as solid solution within the crystal lattice and/or invisible nanoparticles in sulfides minerals. The Co/Ni ratio of most pyrite is lower than 1, suggesting that the metals in the ore-forming fluid are sourced from sedimentary rocks. The coupled behavior between Au and As; Au and Sb suggests that the substitution of As and Sb in pyrite can enhance the incorporation of Au. Variation of trace elements in pyrites of different stages suggests some information on the mineralization processes: Large ion lithophile elements (such as Ba and Pb) are enriched in Py0 indicating that water-rock reaction occurred in the Early stage; Fine-grained Py1 with a heterogeneous distribution of elements suggests fast crystallization of pyrite in the Middle stage.  相似文献   

11.
《Ore Geology Reviews》2003,22(1-2):61-90
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 °C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background.  相似文献   

12.
ABSTRACT

The Guichi ore-cluster district in the Lower Yangtze River Metallogenic Belt hosts extensive Cu–Au–Mo polymetallic deposits including the Tongshan Cu–Mo, Paodaoling Au, Matou Cu–Mo, Anzishan Cu–Mo, Guilinzheng Mo and Zhaceqiao Au deposits, mostly associated with the late Mesozoic magmatic rocks, which has been drawn to attention of study and exploration. However, the metallogenic relationship between magmatic rocks and the Cu–Au-polymetallic deposits is not well constrained. In this study, we report new zircon U–Pb ages, Hf isotopic, and geochemical data for the ore-bearing intrusions of Guichi region. LA-ICP-MS U–Pb ages for the Anzishan quartz diorite porphyrite is 143.9 ± 1.0 Ma. Integrated with previous geochronological data, these late Mesozoic magmatic rocks can be subdivided into two stages of magmatic activities. The first stage (150–132 Ma) is characterized by high-K calc-alkaline intrusions closely associated with Cu–Au polymetallic ore deposits. Whereas, the second stage (130–125 Ma) produced granites and syenites and is mainly characterized by shoshonite series that are related to Mo–Cu mineralization. The first stage of magmatic rocks is considered to be formed by partial melting of subducted Palaeo-Pacific Plate, assimilated with Yangtze lower crust and remelting Meso-Neoproterozoic crust/sediments. The second stage of magmatism is originated from partial melting of Mesoproterozoic-Neoproterozoic crust, mixed with juvenile crustal materials. The depression cross to the uplift zone of the Jiangnan Ancient Continent forms a gradual transition relation, and the hydrothermal mineralization composite with two stages have certain characteristics along the regional fault (Gaotan Fault). Guichi region results from two episodes of magmatism probably related to tectonic transition from subduction of Palaeo-Pacific Plate to back-arc extensional setting between 150 and 125 Ma, which lead to the Mesozoic large-scale polymetallic mineralization events in southeast China.  相似文献   

13.
张吉宽 《黄金地质》2000,6(3):70-76
经过对4个金矿区带的系统调查研究。发现脉状热液金矿由早而晚具有磁黄铁矿-石英、黄铁矿-毒砂,黄铁矿-石英大脉、金-脉状黄铁矿、金银-多金属硫化物、金银-碲化物,黄铁矿-石英-碳酸盐7个阶段,矿床之间的差异只是成矿阶段系列发育的完整程度和成矿阶段发育的强度不同。在矿床、矿带和矿田范围内,都具有由上而下,由早而晚的金矿化垂向相对分带,Au,Cu,Zn,Pb,Ag存在明显的时空变化趋势。  相似文献   

14.
The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.  相似文献   

15.
Wulaga epithermal gold deposit is located in northeast China. Gold mineralization mainly occurs within the crypto‐explosive breccia belt of subvolcanic intrusion. Constraints on the precise timing of mineralization are of fundamental importance for understanding the ore genesis of the Wulaga gold deposit and its mineralization potential. Three hydrothermal stages have been identified: the early veiny quartz–euhedral pyrite stage; the fine pyrite–marcasite–gray or black chalcedony stage; and the late carbonate–pyrite stage. The Rb–Sr dating of gold‐bearing pyrites from the fine pyrite–marcasite–gray or black chalcedony stage is 113.8 ± 4.4 Ma with an initial 87Sr/86Sr ratio of 0.706346 ± 0.000019. The age of the gold deposit is consistent with the age of ore‐bearing volcanic (109–113 Ma) and subvolcanic intrusion (103–112 Ma) within the error limits, and the pyrite initial ratio has an identical value of 87Sr/86Sr to subvolcanic intrusion (0.705547 ± 0.000012). These indicate that crystallization of the wall rock and epithermal gold mineralization was coeval and likely cogenetic. Moreover, a lot of epithermal gold deposits that formed in Early Cretaceous volcanic and subvolcanic intrusions have been discovered in recent years in Heilongjiang province. Combined with the studies of tectonic and magmatic activities, we propose that the formation of the Wulaga gold deposit might be caused by the heated circum‐flow water related to the volcanic–subvolcanic intrusive hydrothermal event triggered by the ancient subduction of the Izanagi plate in the Early Cretaceous.  相似文献   

16.
The 13.1-Moz high-sulfidation epithermal gold deposit of Lagunas Norte, Alto Chicama District, northern Peru, is hosted in weakly metamorphosed quartzites of the Upper Jurassic to Lower Cretaceous Chimú Formation and in overlying Miocene volcanic rocks of dacitic to rhyolitic composition. The Dafne and Josefa diatremes crosscut the quartzites and are interpreted to be sources of the pyroclastic volcanic rocks. Hydrothermal activity was centered on the diatremes and four hydrothermal stages have been defined, three of which introduced Au ± Ag mineralization. The first hydrothermal stage is restricted to the quartzites of the Chimú Formation and is characterized by silice parda, a tan-colored aggregate of quartz-auriferous pyrite–rutile ± digenite infilling fractures and faults, partially replacing silty beds and forming cement of small hydraulic breccia bodies. The δ34S values for pyrite (1.7–2.2?‰) and digenite (2.1?‰) indicate a magmatic source for the sulfur. The second hydrothermal stage resulted in the emplacement of diatremes and the related volcanic rocks. The Dafne diatreme features a relatively impermeable core dominated by milled slate from the Chicama Formation, whereas the Josefa diatreme only contains Chimú Formation quartzite clasts. The third hydrothermal stage introduced the bulk of the mineralization and affected the volcanic rocks, the diatremes, and the Chimú Formation. In the volcanic rocks, classic high-sulfidation epithermal alteration zonation exhibiting vuggy quartz surrounded by a quartz–alunite and a quartz–alunite–kaolinite zone is observed. Company data suggest that gold is present in solid solution or micro inclusions in pyrite. In the quartzite, the alteration is subtle and is manifested by the presence of pyrophyllite or kaolinite in the silty beds, the former resulting from relatively high silica activities in the fluid. In the quartzite, gold mineralization is hosted in a fracture network filled with coarse alunite, auriferous pyrite, and enargite. Alteration and mineralization in the breccias were controlled by permeability, which depends on the type and composition of the matrix, cement, and clast abundance. Coarse alunite from the main mineralization stage in textural equilibrium with pyrite and enargite has δ34S values of 24.8–29.4?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of 6.8–13.9?‰, consistent with H2S as the dominant sulfur species in the mostly magmatic fluid and constraining the fluid composition to low pH (0–2) and logfO2 of ?28 to ?30. Alunite–pyrite sulfur isotope thermometry records temperatures of 190–260 °C; the highest temperatures corresponding to samples from near the diatremes. Alunite of the third hydrothermal stage has been dated by 40Ar/39Ar at 17.0?±?0.22 Ma. The fourth hydrothermal stage introduced only modest amounts of gold and is characterized by the presence of massive alunite–pyrite in fractures, whereas barite, drusy quartz, and native sulfur were deposited in the volcanic rocks. The $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of stage IV alunite vary between 11.5 and 11.7?‰ and indicate that the fluid was magmatic, an interpretation also supported by the isotopic composition of barite (δ34S?=?27.1 to 33.8?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ ?=?8.1 to 12.7?‰). The Δ34Spy–alu isotope thermometry records temperatures of 210 to 280 °C with the highest values concentrated around the Josefa diatreme. The Lagunas Norte deposit was oxidized to a depth of about 80 m below the current surface making exploitation by heap leach methods viable.  相似文献   

17.
Abstract: The Kanggur gold deposit lies in East Tianshan mountains, eastern section of Central Asia orogenic belt. The gold mineralization occurs on the northern margin of the Aqishan‐Yamansu Paleozoic island arc in the Tarim Plate. It was hosted mainly in Middle‐Lower Carboniferous calc‐alkaline volcanic rocks, and controlled by the distributions of syn‐tectonic intrusions and ductile shear zones. In order to determine ore‐forming age of the Kanggur deposit, samples were collected from ores, wall rocks, altered rocks and intrusions. The dating methods include Rb‐Sr isochron and Sm‐Nd isochron, and secondly 40Ar/39Ar age spectrum, U‐Pb and Pb‐Pb methods. Based on the mineral assemblage and crosscutting relationship of ore veins, five mineralization stages are identified. This result is confirmed by isotope geochronologic data. The first stage featuring formation of pyrite‐bearing phyllic rock, is mineralogically represented by pyrite, sericite and quartz with poor native gold. The Rb‐Sr isochron age of this stage is 2905 Ma. The second stage represents the main ore‐forming stage and is characterized by native gold–quartz–pyrite–magnetite–chlorite assemblage. Magnetite and pyrite of this stage are dated by Sm‐Nd isochron at 290.47.2 Ma and fluid inclusion in quartz is dated by Rb‐Sr isochron at 282.35 Ma. The third mineralization stage features native gold–quartz–pyrite vein. In the fourth stage, Au‐bearing polymetallic sulfide‐quartz veins formed. Fluid inclusions in quartz are dated by Rb‐Sr isochron method at 25821 Ma. The fifth stage is composed of sulfide‐free quartz–carbonate veins with Rb‐Sr age of 2547 Ma. The first and second stages are related to ductile‐brittle deformation of shear zones, and are named dynamo‐metamorphic hydrothermal period. The third to fifth stages related to intrusive processes of tonalite and brittle fracturing of the shear zones, are called magmato‐hydrothermal mineralization period. The Rb‐Sr isochron age of 2905 Ma of the altered andesite in the Kanggur mine area may reflect timing of regional ductile shear zone. The Rb‐Sr isochron age of 28216 Ma of the quartz‐syenite porphyry and the zircon U‐Pb age of 2757 Ma of tonalite in the north of Kanggur gold mine area are consistent with the age of gold mineralization (290‐254 Ma). This correspondence indicates that the tonalite and subvolcanic rocks may have been related to gold mineralization. The Rb–Sr, Sm‐Nd and U‐Pb ages and regional geology support the hypothesis that the Kanggur gold deposit was formed during collisional orogenesis process in Late Variscan.  相似文献   

18.
The gold deposits at Kalgoorlie in the 2.7-Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, occur adjacent to the D2 Golden Mile Fault over a strike of 8 km within a district-scale zone marked by porphyry dykes and chloritic alteration. The late Golden Pike Fault separates the older (D2) shear zone system of the Golden Mile (1,500 t Au) in the southeast from the younger (D4) quartz vein stockworks at Mt Charlotte (126 t Au) in the northwest. Both deposits occur in the Golden Mile Dolerite sill and display inner sericite–ankerite alteration and early-stage gold–pyrite mineralization replacing the wall rocks. Late-stage tellurides account for 20 % of the total gold in the first, but for <1 % in the second deposit. In the Golden Mile, the main telluride assemblage is coloradoite?+?native gold (898–972 fine)?+?calaverite?+?petzite?±?krennerite. Telluride-rich ore (>30 g/t Au) is characterized by Au/Ag?=?2.54 and As/Sb?=?2.6–30, the latter ratio caused by arsenical pyrite. Golden Mile-type D2 lodes occur northwest of the Golden Pike Fault, but the Hidden Secret orebody, the only telluride bonanza mined (10,815 t at 44 g/t Au), was unusually rich in silver (Au/Ag?=?0.12–0.35) due to abundant hessite. We describe another array of silver-rich D2 shear zones which are part of the Golden Mile Fault exposed on the Mt Charlotte mine 22 level. They are filled with crack-seal and pinch-and-swell quartz–carbonate veins and are surrounded by early-stage pyrite?+?pyrrhotite disseminated in a sericite–ankerite zone more than 6 m wide. Gold grade (0.5–0.8 g/t) varies little across the zone, but Au/Ag (0.37–2.40) and As/Sb (1.54–13.9) increase away from the veins. Late-stage telluride mineralization (23 g/t Au) sampled in one vein has a much lower Au/Ag (0.13) and As/Sb (0.48) and comprises scheelite, pyrite, native gold (830–854 fine), hessite, and minor pyrrhotite, altaite, bournonite, and boulangerite. Assuming 250–300 °C, gold–hessite compositions indicate a fluid log f Te2 of ?11.5 to ?10, values well below the stability of calaverite. The absence of calaverite and the dominance of hessite in the D2 lodes of the Mt Charlotte area point to a kilometer-scale mineral and Au/Ag zonation along the Golden Mile master fault, which is attributed to a lateral decrease in peak tellurium fugacity of the late-stage hydrothermal fluid. The As/Sb ratio may be similarly zoned to lower values at the periphery. The D4 gold–quartz veins constituting the Mt Charlotte orebodies represent a younger hydrothermal system, which did not contribute to metal zonation in the older one.  相似文献   

19.
The Heijianshan Fe–Cu (–Au) deposit, located in the Aqishan-Yamansu belt of the Eastern Tianshan (NW China), is hosted in the mafic–intermediate volcanic and mafic–felsic volcaniclastic rocks of the Upper Carboniferous Matoutan Formation. Based on the pervasive alteration, mineral assemblages and crosscutting relationships of veins, six magmatic–hydrothermal stages have been established, including epidote alteration (Stage I), magnetite mineralization (Stage II), pyrite alteration (Stage III), Cu (–Au) mineralization (Stage IV), late veins (Stage V) and supergene alteration (Stage VI). The Stage I epidote–calcite–tourmaline–sericite alteration assemblage indicates a pre-mineralization Ca–Mg alteration event. Stage II Fe and Stage IV Cu (–Au) mineralization stages at Heijianshan can be clearly distinguished from alteration, mineral assemblages, and nature and sources of ore-forming fluids.Homogenization temperatures of primary fluid inclusions in quartz and calcite from Stage I (189–370 °C), II (301–536 °C), III (119–262 °C) and V (46–198 °C) suggest that fluid incursion and mixing probably occurred during Stage I to II and Stage V, respectively. The Stage II magmatic–hydrothermal-derived Fe mineralization fluids were characterized by high temperature (>300 °C), medium–high salinity (21.2–56.0 wt% NaCl equiv.) and being Na–Ca–Mg–Fe-dominated. These fluids were overprinted by the external low temperature (<300 °C), medium–high salinity (19.0–34.7 wt% NaCl equiv.) and Ca–Mg-dominated basinal brines that were responsible for the subsequent pyrite alteration and Cu (–Au) mineralization, as supported by quartz CL images and H–O isotopes. Furthermore, in-situ sulfur isotopes also indicate that the sulfur sources vary in different stages, viz., Stage II (magmatic–hydrothermal), III (basinal brine-related) and IV (magmatic–hydrothermal). Stage II disseminated pyrite has δ34Sfluid values of 1.7–4.3‰, comparable with sulfur from magmatic reservoirs. δ34Sfluid values (24.3–29.3‰) of Stage III Type A pyrite (coexists with hematite) probably indicate external basinal brine involvement, consistent with the analytical results of fluid inclusions. With the basinal brines further interacting with volcanic/volcaniclastic rocks of the Carboniferous Matoutan Formation, Stage III Type B pyrite–chalcopyrite–pyrrhotite assemblage (with low δ34Sfluid values of 4.6–10.0‰) may have formed at low fO2 and temperature (119–262 °C). The continuous basinal brine–volcanic/volcaniclastic rock interactions during the basin inversion (∼325–300 Ma) may have leached sulfur and copper from the rocks, yielding magmatic-like δ34Sfluid values (1.5–4.1‰). Such fluids may have altered pyrite and precipitated chalcopyrite with minor Au in Stage IV. Eventually, the Stage V low temperature (∼160 °C) and low salinity meteoric water may have percolated into the ore-forming fluid system and formed late-hydrothermal veins.The similar alteration and mineralization paragenetic sequences, ore-forming fluid sources and evolution, and tectonic settings of the Heijianshan deposit to the Mesozoic Central Andean IOCG deposits indicate that the former is probably the first identified Paleozoic IOCG-like deposit in the Central Asian Orogenic Belt.  相似文献   

20.
甘肃李坝金矿围岩蚀变与金成矿关系   总被引:1,自引:0,他引:1  
西秦岭地区是目前国内造山型和卡林型金矿找矿的热点地区之一,已发现的甘肃李坝造山型金矿为超大型规模。以李坝金矿6号矿带为例,系统地研究了其蚀变矿物组合、近矿围岩蚀变分带及相应的金矿化特征,总结了矿床(带)的蚀变分带模式。该模式具典型的中心式环带结构,可分为3个蚀变带,由中心向外依次为黄铁绢英岩化带、绢云母化带和绿泥石化带。蚀变矿物组合分别为黄铁矿+绢云母+石英±毒砂±白云母±电气石±方解石、绢云母+绿泥石+石英+黄铁矿±黑云母及绿泥石+黑云母±绢云母±黄铁矿;与这3个蚀变带相对应的是金的富集带、矿化带和无矿带。蚀变岩石物质组分迁移分析表明,围岩蚀变及其分带是热水流体/岩石反应时岩石化学组分发生迁移的结果,矿化伴随着蚀变发生,且金矿化与黄铁矿化和浸染状硅化关系最为密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号