首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

2.
The origin of low-K rhyolites from the mariana frontal arc   总被引:3,自引:0,他引:3  
Low-K rhyolites and overlying 2-pyroxene andesites, both of Late Eocene age, comprise the oldest volcanic units exposed on Saipan. The mineralogy and geologic setting of these rocks indicate they were erupted in a volcanic arc setting. The presence of andesite and lack of basalts of similar age suggest that the rhyolites are not part of a typical bimodal (basalt/rhyolite) suite.Major and trace element data indicate the Saipan andesites were not parental to the rhyolites. Out of various models evaluated for derivation of the rhyolites, the most reasonable involves crystal fractionation of a boninite series andesite that was very depleted in LIL elements. This andesite probably evolved from more mafic magmas which in turn were derived from the sub-arc mantle. Isotopic data suggest the mantle source for these magmas may have contained a minor seawater component.  相似文献   

3.
崂山花岗岩岩石地球化学与成因   总被引:21,自引:1,他引:21  
崂山花岗岩是中国东部晚中生代较典型的由钙碱性岩碱和碱性岩套构成的复合花岗岩体,可划分石英二长岩、黑云二长花岗岩、正长花岗岩和碱性花岗同夺四个单元,结晶年龄分别为146.8、126.2、113.0和110.8Ma。岩石地球化学研究表明:钙碱性岩套自石英二长岩→黑云二长花岗岩→正长花岗岩 呈现向富硅、富碱、低铝、低钙、低镁方向的演化特征;碱性花岗岩总体呈现出高硅、高碱、低铝、低钙、低镁的特征,其大离子亲石元素和高场强元素Ga、Nb、Hf、Zr、Y及Ga/Al、F/Cl比值等明显偏高,与国内外典型的A型花岗岩成分相当。同位泰示踪及成岩机理研究揭示出崂山花岗岩起源于下地壳基底变质岩的部分熔融。两套岩石分别与两次熔融事件有关,钙碱性岩套各单元是岩浆不同分离结晶程度的产物,而碱性花岗岩可能起源于经先前熔融事件(形成钙碱性岩套)萃取过的残留源岩,其形成与AFC过程有关。基于一系列地球化学图解的判别,结合区域构造演化,指出崂山花岗岩是胶北地体-胶南地体陆-陆碰撞剪切造山带构造发展演化至特定阶段的产物,钙碱性岩套形成于造山晚期压性或压性向张性转化的应力环境,而碱性花岗岩则形成千造山期后的剪切张性(transtension)构造环境.后者成为苏北-胶南地区燕山晚期造山作用结束的标志。  相似文献   

4.
The Cold Bay Volcanic Center,Aleutian Volcanic Arc   总被引:1,自引:0,他引:1  
The Cold Bay Volcanic Center has experienced two major stages of eruptive activity. Early (M-Series) acitivity produced bimodal Hi-Alumina basalt and calc-alkaline andesite lavas while later (FPK-Series) activity produced only calc-alkaline andesite. The spectrum of basalt compositions is believed to be due to high pressure (8 kb) fractionation at or near the base of the crust. Abundant mineralogical and geochemical evidence support a lower pressure mixing origin for all andesites. Inspection of the mineralogical data has shown that the earliest (M-Series) andesites were produced by mixing of basalt (<53 wt% SiO2) and silicic andesite (60.5 to 62.5 wt%) while later (FPK-Series) andesites resulted from the mixing of basaltic-andesite (53 to 56 wt%) and less silicic andesite (58.5 to 60.0 wt%). The major element and trace element geochemical data are consistent with a low pressure fractionation origin for the silicic endmember magmas and support the temporal variations in both mafic and silicic endmember compositions. The complete lack of crustal inclusions in all lavas is taken as evidence for a minimal crustal melting and/or assimilation role in the origin of the silicic endmembers. Many of the features of all andesites, including the important long term convergence of endmember magma compositions, are consistent with the process of liquid fractionation, accompanied by large scale magma mixing. A deduced upper limit of 62.5 wt% SiO2 for the silicic endmember magmas suggests that liquid fractionation, in the absence of major crustal melting, cannot produce more silicic magmas. A possible explanation is the presence of a rheological barrier, based on the concept of critical crystallinity (Marsh 1981), which prohibits more silicic liquids from being extracted from a crystal-liquid suspension.  相似文献   

5.
Fluorine contents in 38 Quaternary volcanic rocks, representing calc-alkaline andesite eruptive groups from the Garibaldi Lake area, were determined by a selective ion-electrode method. A close relationship is evident between F abundance and the type of ferromagnesian phenocrysts present in the andesitic rocks. Hypersthene andesites have the lowest F contents (142–212 ppm), whereas hornblende-biotite andesites exhibit the highest F values (279–368 ppm); hornblende andesites have intermediate F contents (238–292 ppm). The hornblende-free Desolation Valley basaltic andesite has a lower F content than the hornblende-bearing Sphinx Moraine basaltic andesite (122 ppm versus 317–333 ppm).Different eruptive suites can be grouped on the basis of F differentiation patterns into (1) a hornblende-free lava series in which the F content of basaltic andesite is less than that of andesite, and (2) a hornblende-bearing lava series in which F contents remain constant or decrease slightly from basaltic andesite through dacite. Fluorine variation in the former series was controlled largely by fractionation of anhydrous minerals, whereas that in the latter was influenced by crystallization of amphibole, biotite and apatite.The distinctive F variation patterns of the two lava series appear to represent real differences in the volatile contents of Garibaldi Lake magmas. These different volatile concentrations may reflect varying degrees of magma-wallrock interaction, differences in the initial volatile contents of the primary magmas, or some combination of these factors.  相似文献   

6.
Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene‐Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4–1.0 Ma) and Shishimano (1.7–0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction‐related arc volcanic rocks. Modal and whole‐rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so‐called EMI‐type Sr‐Nd and DUPAL anomaly‐like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high‐alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component.  相似文献   

7.
A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.  相似文献   

8.
Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) 25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23–25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19–23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole, mica, and sphene compositions suggest that the peralkaline magma evolved from metaluminous magma. Extensive feldspar fractionation occurred during evolution of the peralkaline magmas, but additional alkali and iron enrichment was likely a result of high halogen fluxes from crystallizing plutons and basaltic magmas at depth.  相似文献   

9.
The southern Sinai Peninsula, underlain by the northernmost extension of the Arabian-Nubian Shield, exposes post-collisional calc-alkaline and alkaline granites that represent the youngest phase of late Neoproterozoic igneous activity. We report a petrographic, mineralogical and geochemical investigation of post-collisional plutons of alkaline and, in some cases, peralkaline granite. These granites intrude metamorphosed country rocks as well as syn- and post-collisional calc-alkaline granitoids. The alkaline and peralkaline granites of the southern tip of Sinai divide into three subgroups: syenogranite, alkali feldspar granite and riebeckite granite. The rocks of these subgroups essentially consist of alkali feldspar and quartz with variable amounts of plagioclase and mafic minerals. The syenogranite and alkali feldspar granite contain small amounts of calcic amphibole and biotite, often less than 3%, while the riebeckite granite is distinguished by sodic amphibole (5–10%). These plutons have geochemical signatures typical of post-collisional A-type granites and were most likely emplaced during a transition between orogenic and anorogenic settings. The parental mafic magma may be linked to lithospheric delamination and upwelling of asthenospheric mantle material. Differentiation of the underplated basaltic magma with contributions from the juvenile crust eventually yielded the post-collisional alkaline granites. Petrogenetic modelling of the studied granitic suite shows that pure fractional crystallization cannot quantitatively explain chemical variations with the observed suite, with both major oxides and several trace elements displaying trends opposite to those required by the equilibrium phase assemblage. Instead, we show that compositional variation from syenogranite through alkali feldspar granite to riebeckite granite is dominated by mixing between a low-SiO2 liquid as primitive or more primitive than the lowest-SiO2 syenogranite and an evolved, high-SiO2 liquid that might be a high-degree partial melt of lower crust.  相似文献   

10.
关于A型花岗岩命名问题的讨论   总被引:9,自引:2,他引:9  
针对目前国内A型花岗岩命名中出现的一些问题,建议以“碱性花岗岩类”一词代替A型花岗岩。碱性花岗岩类包括碱性和过碱性花岗岩及与之伴生的英碱正长岩、石英正长岩,以及与之伴生并且成分相近的碱长花岗岩和富碱的偏铝质花岗岩。这些岩石有相近的岩石化学成分、矿物成分和成岩构造环境。采用“碱性花岗岩类”一词易为国人接受,特别是有利于初学者和野外地质填图工作者进行岩石定名。  相似文献   

11.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

12.
全球新生代安山岩构造环境有关问题探讨   总被引:6,自引:0,他引:6       下载免费PDF全文
20世纪70~80年代,以Pearce为代表的一批科学家先后提出了玄武岩和花岗岩的构造环境判别图,将构造环境与岩石地球化学特征有机地结合起来,为岩浆岩大地构造环境研究开辟了新途径。但学术界对全球广布的安山岩构造环境及相关地球化学特征问题的讨论则相对不足。本文利用GEOROC 和PetDB 两个数据库对全球新生代安山岩进行数据挖掘,讨论了它们的地球化学特征及形成环境。初步将全球新生代安山岩归属为12个形成构造环境,其中67.71%产出于岛弧、陆缘弧等汇聚板块边缘环境,其余安山岩则形成于大陆板内、大陆溢流、洋岛、大陆裂谷、洋中脊等构造环境。研究表明,常用的玄武岩微量元素判别图以及LILE/HFSE 玄武岩判别图均在一定程度上可用于安山岩成因及环境判别, 暗示安山岩地球化学成分也可用于构造环境的判定。采用大数据思维,探索洋岛安山岩(OIA)和岛弧安山岩(IAA)中地球化学元素的关联关系,从获得的近20 000 个OIA-IAA 判别图中选出lg(Cs/Ta)-lg(Cu/Ta)、lg(CaO/Nb)-lg(Cs/Zr)和lg(Cu/Ta)-lg(Co/Nb)等6个图解,能有效限定它们的构造环境,为安山岩成因及形成环境研究提供了新的思路。这些初步成果说明科学大数据的研究方法可成为岩浆岩构造环境及地球化学研究中的重要有效手段。  相似文献   

13.
We present major and trace element analyses and U–Pb zircon intrusion ages from I-type granitoids sampled along a crustal transect in the vicinity of the Chilas gabbronorite of the Kohistan paleo-arc. The aim is to investigate the roles of fractional crystallization of mantle-derived melts and partial melting of lower crustal amphibolites to produce the magmatic upper crust of an island arc. The analyzed samples span a wide calc-alkaline compositional range (diorite–tonalite–granodiorite–granite) and have typical subduction-related trace element signatures. Their intrusion ages (75.1 ± 4.5–42.1 ± 4.4 Ma) are younger than the Chilas Complex (~85 Ma). The new results indicate, in conjunction with literature data, that granitoid formation in the Kohistan arc was a continuous rather than punctuated process. Field observations and the presence of inherited zircons indicate the importance of assimilation processes. Field relations, petrographic observations and major and trace element compositions of the granitoid indicate the importance of amphibole fractionation for their origin. It is concluded that granitoids in the Kohistan arc are derivative products of mantle derived melts that evolved through amphibole-dominated fractionation and intra crustal assimilation.  相似文献   

14.
This paper presents materials of granitoids from the western Angara-Vitim batholith and the country gneisses and migmatites of the Talanchan Metamorphic Complex. The granitoids of the older intrusive phases of the Barguzin Complex are characterized by high dispersions in the contents of most trace element. The similarities in their trace-element signatures to those of metavolcanics of the Talanchan Group indicate that the latter could have served as a source of the granitoid melts. The increase in the K, Rb, Sn, Be, and REE contents from granitoids of the older phase of the Barguzin Complex to the main phase of this complex and further to the granites of the Zazin Complex is a result of melt fractionation which simultaneously became more uniform and acquired Eu minima. The group of calc-alkaline diorites is identical in composition to the metavolcanics and probably complements the latter. Metagabbro of normal alkalinity and synplutonic subalkali gabbro of the Oshurkov type are distinguished by composition and the relationships with the country gneisses and granitoids.  相似文献   

15.
李继磊  钱青  高俊  苏文  张喜  刘新  江拓 《岩石学报》2010,26(10):2913-2924
西天山昭苏东南部阿登套地区大哈拉军山组火山岩主要由玄武质安山岩组成,具有富集大离子亲石元素、亏损高场强元素(如Nb、Ta、Ti)、稀土元素高度分馏的特征。这些玄武安山岩被一些钾长花岗岩和花岗斑岩脉体侵入。钾长花岗岩脉为准铝质,含有较高的Na2O+K2O、轻稀土元素、Zr、Nb、Y含量和较高的FeOT/MgO及Ga/Al比值。两类花岗岩均亏损Ba、Sr、P、Ti和Eu。钾长花岗岩和花岗斑岩给出的Laser-ICPMS锆石U-Pb年龄分别为354.2±2.3Ma和339.5±2.3Ma,表明其围岩即大哈拉军山组火山岩的形成时代不晚于早石炭世早期。综合野外地质观察、区域地质构造以及上述岩石的地球化学特征和时代,我们认为西天山昭苏南部大哈拉军山组火山岩及侵入其中的早石炭世A型花岗岩脉可能形成于活动陆缘弧后拉张环境。  相似文献   

16.
M.E.P. Gomes  A.M.R. Neiva 《Lithos》2005,81(1-4):235-254
Deformed Hercynian peraluminous granitoids ranging from tonalite to granite crop out in the Rebordelo–Agrochão area, northern Portugal and some of them contain tonalitic and granodioritic enclaves. Variation diagrams of major and trace elements of the rocks, biotites and sphenes show fractionation trends. The most- and the least-deformed samples of granite and their biotites also define fractionation trends. There is decrease in all rare earth element (REE) contents and increase in the Eu anomaly in REE patterns from the most- to the least-deformed samples of granite. All the granitoids define a whole-rock Rb–Sr errorchron. A whole-rock Rb–Sr isochron for the least-deformed samples of granite yields an age of 357±9 Ma and an initial 87Sr/86Sr ratio of 0.7087±0.0007. Geochemical modelling suggests that the tonalitic magma evolved by AFC (fractional crystallization of magnesiohornblende, plagioclase, quartz, biotite and ilmenite, and assimilation of metasediments) to originate tonalitic and granodioritic enclaves, granodiorite and granite. δ18O values support this mechanism. The tonalite is hybrid and derived by interaction of a mantle-derived magma and crustal materials.  相似文献   

17.
花岗岩是陆壳的重要组成部分,花岗岩的研究对研究大陆岩石圈的结构、组成和演化具有重要意义。本文运用Barbarin花岗岩构造类型划分方案,对有关东天山地区花岗岩进行了有益的文献汇总和讨论的基础上,首次将东天山地区花岗岩划分为含角闪石钙碱性花岗岩类,富钾及钾长石斑状钙碱性花岗岩类,含堇青石及黑云母过铝质花岗岩类,含白云母过铝质花岗岩类。根据它们各自的岩石及地球化学特征认为岩浆来源分别为地幔橄榄岩区混熔了一部分楔形地幔上面的地壳;地壳安山质源岩混有部分幔源;硬砂质岩石以及泥质岩石的局部熔融。  相似文献   

18.
Petrologic studies of tephra from Kanaga, Adak, and Great Sitkin Islands indicate that amphibole fractionation and magma mixing are important processes controlling the composition of calc-alkaline andesite and dacite magmas in the central Aleutians. Amphibole is ubiquitous in tephra from Kanaga and Adak Islands, whereas it is present only in a basaltic-andesite pumice from Great Sitkin. Dacitic tephra from Great Sitkin do not contain amphibole. Hornblende dacite tephra contain HB+PLAG+OX±OPX±CPX phenocrysts with simple zoning patterns, suggesting that the dacites evolved in isolated magma chambers. Andesitic tephra from Adak contain two pyroxene and hornbelende populations, and reversely zoned plagioclase, indicating a more complex history involving mixing and fractional crystallization. Mass balance calculations suggest that the andesitic tephra may represent the complements of amphibole-bearing cumulate xenoliths, both formed during the evolution of high-Al basalts. The presence of amphibole in andesitic and dacitic tephra implies that Aleutian cale-alkaline magmas evolve in the mid to lower crust under hydrous (>4 wt.% H2O) and oxidizing (Ni–NiO) conditions. Amphibole-bearing andesites and pyroxene-bearing dacites from Great Sitkin indicates fractionation at several levels within the arc crust. Despite its absence in many calc-alkaline andesite and dacite lavas, open system behavior involving amphibole fractionation can explain the trace element characteristies of lavas found on Adak Island. Neither open nor closed system fractionation involving a pyroxene-bearing assemblage is capable of explaining the trace element concentrations or ratios found in the Adak suite. We envision a scenario where amphibole was initially a liquidus phase in many calc-alkaline magmas, but was later replaced by pyroxenes as the magmas rose to shallow levels within the crust. The mineral assemblage in these evolved lavas reflects shallow level equilibration of the magma, whereas the trace element chemistry provides evidence for a earlier, amphibole-bearing, mineral assemblage.  相似文献   

19.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

20.
Mt. Baker is a dominantly andesitic stratovolcano in the northern Cascade arc. In this study, we show that the andesites are not all derived from similar sources, and that open-system processes were dominant during their petrogenesis. To this end, we discuss petrographic observations, mineral chemistry, and whole rock major and trace element chemistry for three of Mt. Baker’s late Pleistocene to Holocene lava flow units. These include the basalt and basaltic andesite of Sulphur Creek (SC) (51.4–55.8 wt% SiO2, Mg# 57–58), the Mg-rich andesite of Glacier Creek (GC) (58.3–58.7 wt% SiO2, Mg# 63–64), and the andesite and dacite of Boulder Glacier (BG) (60.2–64.2 wt% SiO2, Mg# 50–57). Phenocryst populations in all units display varying degrees of reaction and disequilibrium textures along with complicated zoning patterns indicative of open-system processes. All lavas are medium-K and calc-alkaline, but each unit displays distinctive trace element and REE characteristics that do not correlate with the average SiO2 content of the unit. The mafic lavas of SC have relatively elevated REE abundances with the lowest (La/Yb)N (~4.5). The intermediate GC andesites (Mg- and Ni-rich) have the lowest REE abundances and the highest (La/Yb)N (~6.7) with strongly depleted HREE. The more felsic BG lavas have intermediate REE abundances and (La/Yb)N (~6.4). The high-Mg character of the GC andesites can be explained by addition of 4% of a xenocrystic olivine component. However, their depleted REE patterns are similar to other high-Mg andesites reported from Mt. Baker and require a distinct mantle source. The two dominantly andesitic units (GC and BG) are different enough from each other that they could not have been derived from the same parent basalt. Nor could either of them have been derived from the SC basalt by crystal fractionation processes. Crystal fractionation also cannot explain the compositional diversity within each unit. Compositional diversity within the SC unit (basalt to basaltic andesite) can, however, be successfully modeled by mixing of basalt with compositions similar to the dacites in the BG unit. Given that the BG dacites erupted at ~80–90 ka, and a similar composition was mixed with the SC lavas at 9.8 ka, the process that produced this felsic end-member must have been repeatedly active for at least 70 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号