首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
利用非线性高能超声测试设备及超声波(纵波、横波)波速与物体力学参数的关系,对人造冰样进行了冰样力学参数(杨氏模量、泊松比、剪切模量、体积模量)随温度变化的研究。通过MATLAB进行所测数据曲线拟合,得到超声波波速在人造冰样中随温度的变化规律,进而由理论公式推导所测人造冰样力学参数随温度的变化规律。结果表明:冰样中超声波波速随温度降低而升高,冰样的杨氏模量、泊松比、剪切模量、体积模量也都随温度降低而升高。本研究有助于超声波检测法在冰样物理力学性质测量中的应用,为开展南极冰盖、海冰以及终年冻土等力学及流动特性研究提供理论模型和实验数据。  相似文献   

2.
Freezing and thawing during the winter season change soil properties such as density. The density change in the particulate media influences soil stiffness. In addition, freezing of partially or fully saturated soils changes the soil matrix from a particulate media to a continuum. The goal of this study is to investigate the cyclic freezing and thawing effects on elastic waves. Sand-silt mixtures with 10% silt fraction in weight and 40% saturation are prepared. The sand-silt mixtures are placed in a nylon cell, onto which a pair of bender elements and a pair of piezoelectric disk elements are installed for the measurement of shear and compressional waves, respectively. The temperature of the mixtures decreases from 20°C to 10°C to freezing. The frozen sample is gradually thawed at room temperature (20°C). These freezing-thawing processes are repeated three times. The test result shows that the shear and compressional wave velocities significantly increase when the specimen is frozen. When the temperature is greater than 0°C, the elastic wave velocities are lower during thawing than during freezing due to soil structure change. This study demonstrates that soil structure change during the winter season may be effectively estimated from elastic waves.  相似文献   

3.
灌溉诱发突发性黄土滑坡机理研究   总被引:1,自引:0,他引:1  
周飞  许强  亓星  巨袁臻  严越 《山地学报》2020,38(1):73-82
系统揭示黑方台突发性黄土滑坡物理力学机理,对滑坡防治具有重要的作用。自上世纪六十年代年黑方台常年的农业灌溉诱发了大量20~40 m厚的饱和突发性黄土滑坡。本研究在野外调查的基础上,通过分析滑坡的变形破坏特征,针对分布范围广、危害性较大的突发性黄土滑坡,利用室内GDS三轴试验和模型试验,分析研究了饱和黄土的应力应变特性及突发性黄土滑坡的力学机制。三轴试验结果表明,当围压小于300 kPa时,饱和黄土可产生完全液化,并处于流塑状态;当围压大于300 kPa时,饱和黄土仅产生部分液化,仍具有一定的抗剪强度。饱和黄土的应力—应变模式均表现为强烈的应变软化—剪缩型,并具有一定的稳态特性。模型试验表明突发性黄土滑坡的变形破坏过程可大致分为底部浸水饱和—毛细水上升—持续蠕动变形—突发性破坏4个阶段。斜坡发生突发性破坏时,孔隙水压力激增,但总应力仍大于孔隙水压力,黄土滑坡发生部分液化,饱和黄土仍具有一定的强度,为突发性黄土滑坡发生提供了应力和能量积累的力学条件。研究从有效应力原理的角度阐述了突发性黄土滑坡的力学机理,可以为滑坡的防治治理提供一定的理论依据。  相似文献   

4.
Lagoon berms in western Alaska are difficult to design and build due to limited resources, high cost of construction and materials, and warm permafrost conditions. This paper explores methods to treat locally available frozen materials and use them for berm construction. The goal is to find an optimized mix ratio for cement and additives that can be effective in increasing the strength and decreasing the thaw settlement of an ice-rich frozen silty soil. Soil of similar type and ice content to the permafrost found at a project site in Eek, Alaska is prepared in a cold room. The frozen soil is pulverized and cement, additives and fibers are added to the samples for enhancing shear strength and controlling thaw settlement. Thaw settlement and direct shear testsare performed to assess strength and settlement characteristics. This paper presents a sample preparation method, data from thaw settlement and direct shear tests, and analyses of the test results and preliminary conclusions.  相似文献   

5.
There are three types of surfaces which are used for studying wave propagation in anisotropic media: normal surfaces, slowness surfaces and wave surfaces. Normal surfaces and slowness surfaces have been researched in detail. Wave surfaces are the most complicated and comparatively poorly known compared with the other two. Areas of complicated geometrical structure of the wave surfaces are located in the vicinity of conical acoustic axes. There is an elliptical hole on the quick shear wave surface and complicated folds and cusps on the slow shear wave surface. Decomposition of the slow shear wave surface into smooth sheets is used for the study of its geometrical structure. Complexity of shear wave surfaces can be expressed by the number of waves corresponding to a fixed ray. An original approach to the calculation of wave normals depending on ray direction is presented.  相似文献   

6.
The dynamic parameters of permafrost are crucial to and directly affect the accuracy of engineering design and numerical simulation. This paper describes a new dynamic load direct shear apparatus that was developed to measure these parameters. The power systems and measurement and control systems of the device are described, as is a successful validation experiment. The results show that this dynamic load direct shearing device can accurately derive dynamic shear parameters within a certain range of frequencies and amplitudes of shear load.  相似文献   

7.
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which...  相似文献   

8.
The zones of thawed ground in the permafrost area are most dangerous from engineer-geologist effect point of view. Detection of such zones, as making forecast of their movement is the main task of engi...  相似文献   

9.
通过野外现场调查、载荷试验、轻型圆锥动力触探及室内试验,对呼伦贝尔沙质草原厚度30 cm的表层沙土物理力学性质及承载力、剪切变形特征进行研究。结果表明:表层沙土工程分类为细砂,颗粒级配不良,沿深度有明显分层;干密度1.34~1.51 g·cm-3,黏聚力12~27.4 kPa,内摩擦角22.5°~24.0°,变形模量8.5 MPa;各指标表明沙土的工程性质上部差于下部;沙土承载力特征值和极限承载力分别为150 kPa和300 kPa,承载力不足导致表层沙土发生冲剪破坏(塑性破坏)和整体剪切破坏(脆性破坏)。  相似文献   

10.
Railroad operating experience in permafrost conditions has shown that deformations of embankments on thawing foun-dations last for a long time. After an initial period of heat settlement due to permafr...  相似文献   

11.
This article discusses the current concepts of dam design and construction in permafrost regions. It is demonstrated that embankment dams often change their state from frozen to thawed and back during the operation period. It is shown that these transitions are not always attributable to observed climate warming. Where geotechnical, hydrogeological, and permafrost conditions are complicated, proper performance of embankment dams can only be provided by adhering to a selected thermal design for, as an example, a frozen state.  相似文献   

12.
In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway, large scale direct shear tests were conducted with different normal pressures, water contents and temperatures. The results indicate that the relationship between shear displacement and shear stress changed from strain-softening at lower normal pressures to strain-hardening at higher normal pressures, in both unfrozen and frozen states. This phenomenon was mainly due to the shear dilatation deformation effect. The shear displacement-shear stress curves show similar stages. Besides, the shear stress rapidly increased and there was not an increment in the shear displacement during the initial stage of the shear process in the frozen state. In both the unfrozen or frozen states at the same water contents, the shear strength increased with increasing normal pressure.  相似文献   

13.
To investigate the mechanical properties of ice-saturated frozen soil, a series of triaxial tests under various confining pressures(0.5 to 9.0 MPa) on ice-saturated frozen loess with ice content of 23.7% were carried out at a temperature-6 °C, and at 1.25 mm/min of loading rate. The triaxial tests include two loading modes, one with monotonic loading(i.e., triaxial compression), and another with static cycle loading. The test results under triaxial compression show that the strength and deformation behaviors of ice-saturated frozen loess are affected by confining pressure. According to the test results of triaxial loading-unloading cycle test, the elastic modulus evolution with the number of cycles under different confining pressures are analyzed.  相似文献   

14.
The permafrost history of the high northern latitudes over the last two million years indicates that perennially frozen ground formed and thawed repeatedly, probably in close synchronicity with the climate changes that led to the expansion and subsequent shrinkage of continental ice sheets. The early stages of the Pleistocene are the least known and the changes that occurred in the Late Pleistocene and early Holocene are the best known.
Evidence that permafrost is degrading in response to the current global warming trend is difficult to ascertain. The clearest signals are probably provided by changes in permafrost distribution in the sub-Arctic regions. at the extreme southern fringes of the discontinuous permafrost zone.  相似文献   

15.
Crushed rock subgrade, as one of the roadbed-cooling methods, has been widely used in the Qinghai-Tibet Railway. Much attention has been paid on the cooling effect of crushed rock; however, the mechanical properties of crushed rock are somehow neglected. Based on the discrete element method, biaxial compression test condition for crushed rock is compiled in FISH language in PFC2D, and the natural shape of crushed rock is simulated with super particle "cluster". The effect of particle size, crushed rock strength and confining pressure level on overall mechanical properties of the crushed rock aggregate are respectively analyzed. Results show that crushed rock of large particle size plays an essential framework role, which is mainly responsible for the deformation of crushed rock aggregate. The strength of gravel has a great influence on overall mechanical properties which means that strength attenuation caused by the freeze thaw cycles cannot be ignored. The stress-strain curves can be divided into two stages including shear contraction and shear expansion at different confining pressures.  相似文献   

16.
Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamic triaxial tests with multi-stage cyclic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data.  相似文献   

17.
针对以粗粒土为代表的软弱层带在水电、铁路等交通领域对边坡及洞室围岩稳定性的控制,结合某水电工程坝区,分别对岩块岩屑型和岩屑夹泥型两种软弱夹层,在考虑一定围压作用下进行了天然含水状态和饱水状态的现场直剪试验.结果显示,剪应力-剪切位移曲线饱水前、后均呈现出微弱的峰值,整体均表现为塑性破坏特征,饱水前、后发生屈服前的剪切位移分别为5 mm和10 mm以内.在强度参数上,两类夹层饱水前、后峰值强度内摩擦系数降低幅度一般在8%~10%,残余强度一般降低5%以内.表明以粗粒土为代表的软弱层带由于细粒(<0.075 mm)物质少,细粒起不到包裹粗颗粒而作为润滑作用,同时因围压效应,饱水对其强度参数的影响有限,因此不同含水状态对该类软弱层带内摩擦角和内聚力均无显著影响,其强度参数主要还是取决于夹层本身的颗粒成分.  相似文献   

18.
The distribution of mountain permafrost along Trail Ridge Road (TRR) in Rocky Mountain National Park, Colorado, was modeled using ‘frost numbers’ and a ‘temperature of permafrost model’ (TTOP) in order to assess the accuracy of prediction models. The TTOP model is based on regional observations of air temperature and heat transfer functions involving vegetation, soil, and snow; whereas the frost number model is based on site-specific ratios of ground temperature measurements of frozen and thawed degree-days. Thirty HOBO© temperature data loggers were installed near the surface as well as at depth (30 to 85 cm). From mid-July 2008 to 2010, the mean annual soil temperature (MAST) for all surface sites was − 1.5 °C. Frost numbers averaged 0.56; TTOP averaged − 1.8 °C. The MAST was colder on western-facing slopes at high elevations. Surface and deeper probes had similar MASTs; however, deeper probes had less daily and seasonal variation. Another model developed at the regional scale based on proxy indicators of permafrost (rock glaciers and land cover) classified 5.1 km2 of permafrost within the study area, whereas co-kriging interpolations of frost numbers and TTOP data indicated 2.0 km2 and 4.6 km2 of permafrost, respectively. Only 0.8 km2 were common among all three models. Three boreholes drilled within 2 m of TRR indicate that permafrost does not exist at these locations despite each borehole being classified as containing permafrost by at least one model. Addressing model uncertainty is important because nutrients stored within frozen or frost-affected soils can be released and impact alpine water bodies. The uncertainty also exposes two fundamental problems: empirical models designed for high latitudes are not necessarily applicable to mountain permafrost, and the presence of mountain permafrost in the alpine tundra of the Colorado Front Range has not been validated.  相似文献   

19.
Summary. The motion of a layered seabed induced by propagating gravity water waves is modelled by the coupling matrix for a massless incompressible elastic bed according to Yamamoto. An amplitude inversion scheme is developed to extract the bottom shear modulus profile from the motion of the seabed at a point on the bed surface using the linear inverse theory combined with the Yamamoto theory of wave-seabed interaction. Numerical tests using synthetic data without noise confirmed that the inversion is unique and consistent. The inversion technique is applied to a set of field data from the Mississippi River Delta. A good agreement is obtained between the inverted profile and the direct measurements.  相似文献   

20.
Temperature is critical to maintaining seed viability under long-term storage conditions. It has been common practice to use refrigeration systems to maintain required storage temperatures. A seed repository constructed in permafrost in Yakutsk, Russia is the first seed storage facility that relies solely on natural cold. This paper describes the design and performance of the cooling system of the repository. An innovative aspect of the cooling system is that it utilizes the patterns of temperature wave propagation in permafrost. Predicted and measured ground temperatures for the first year of operation are presented and analyzed. Results indicate that convection air cooling systems can be used to control the temperature regime in underground facilities in permafrost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号