首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
风水复合侵蚀研究进展与展望   总被引:3,自引:1,他引:2  
风水复合侵蚀是干旱,半干旱区一种常见的土壤侵蚀类型,是风水两相外营力相互耦合驱动下发生的地表物质再分配过程。在辨析风水复合侵蚀类型的基础上,将风水复合侵蚀影响因子归结为侵蚀动力因子、土壤抗蚀性因子与干扰因子,并分析了影响因子间的互馈关系;从全球尺度、区域尺度和局地尺度,总结了风水复合侵蚀在空间尺度上的差异;评述了风水共同侵蚀过程中侵蚀力与侵蚀能量的叠加效应,风水交替侵蚀过程中侵蚀力与侵蚀能量的交替性特征,以及下垫面和干扰因子对风水复合侵蚀的响应;阐述了风力与水力侵蚀在总侵蚀量中的贡献比率与两者叠加所产生的耦合效应;认为风水复合侵蚀实验研究是认识风水复合侵蚀过程与机理的基础,应将风水复合侵蚀过程段研究扩展到全过程研究,同时加强下垫面在风水复合侵蚀中的响应机制以及水蚀与风蚀间的抑制效应研究,以期达到全面客观地认识风水复合侵蚀过程与机制的目的。  相似文献   

2.
风水复合侵蚀与生态恢复研究进展   总被引:4,自引:0,他引:4  
风水复合侵蚀是风力与水力共同或交替作用相互增强或者削弱的过程。从侵蚀区划分、驱动因素、侵蚀机理和生态恢复对策等方面论述了风水复合侵蚀的研究进展,简述了半干旱风水复合侵蚀区和海岸复合侵蚀区是两个影响最大的风水复合侵蚀区。晋陕蒙接壤区为半干旱风水复合侵蚀区的强烈侵蚀中心,在土地利用上属农牧交错区,生态环境极为脆弱。海岸复合侵蚀岸段分布广泛,侵蚀岸线在总岸线中所占比例较大。影响风水复合侵蚀的因素包括自然和人为因素,且地域差异显著。半干旱区风水复合侵蚀研究主要从侵蚀特点、土壤特性、侵蚀产沙、侵蚀能量研究等方面;海岸复合侵蚀区从侵蚀特征、风暴潮与海岸复合侵蚀关系等方面分析了取得的进展和存在的不足。总结了生物措施和工程措施对风水复合侵蚀区生态恢复的作用,展望了风水复合侵蚀与生态恢复的研究方向,并指出复合侵蚀机理与评估、生态恢复机理与评价研究是今后研究的趋势。  相似文献   

3.
窟野河流域河岸沙丘地貌格局及变化   总被引:2,自引:2,他引:0  
风水交互作用是黄土高原北部风蚀水蚀交错带特殊的侵蚀营力,并致该区土壤侵蚀强度加重。以毛乌素沙地窟野河流域作为研究区,基于影像解译及数理统计方法,研究河道与沙丘交互地貌过程。结果表明:(1)窟野河“三河夹沙”区沙地以河流为中心呈现出对称条带状格局分布,距离河流,依次呈现出流动沙丘、固定半固定沙丘、丘陵沟壑区的空间格局;(2)典型河段河道与沙丘空间格局呈现出河道穿越流动沙丘、河道两侧斑块状沙丘镶嵌分布、两河交汇处流动沙丘分布等3种格局;(3)河道弯曲系数与河道两侧沙丘活动性的变化之间呈现出一定的对应关系。  相似文献   

4.
中国土壤侵蚀类型多样、过程复杂,精准量化流域土壤风蚀和水蚀强度状况,掌握流域土壤侵蚀时空分布格局并辨识区域主导侵蚀类型,对统筹相应的水土保持工作具有重要意义。综合遥感监测、地面调查、模型模拟等手段,定量刻画黄河流域2000—2020年土壤风蚀和水蚀强度的时空格局与演变规律,开展土壤侵蚀类型分区,讨论不同土壤侵蚀分区治理措施的重要作用。结果表明:黄河流域土壤风蚀、水蚀强度均整体呈下降趋势,土壤风蚀、水蚀分别呈波动降低、持续降低态势。以土壤风蚀和土壤水蚀为主的区域分别占区域总面积的16.35%、83.65%,土壤侵蚀类型分区自北向南总体表现为从土壤风蚀为主向水蚀为主过渡。土壤风蚀为主的区域分布在黄河干流上游水系、鄂尔多斯内流区,分别占土壤风蚀区面积的41.53%和28.57%。土壤风蚀中度侵蚀强度所占比例最大,为24.72%。土壤水蚀为主的区域主要分布在黄河中游水系(25.04%)、渭河-伊洛河水系(22.06%)、黄河源头水系(18.60%)、黄河干流上游水系(15.49%)、湟水-洮河水系(13.35%)。土壤水蚀以微度侵蚀强度为主,占土壤水蚀区面积的49.30%,轻度(17.28%)...  相似文献   

5.
气候变化对风水蚀复合区的影响   总被引:1,自引:0,他引:1  
风水蚀复合区作为农牧交错带的敏感区域,对气候变化有着显著的响应。通过实地考察和气象资料的分析,厘定了风水蚀复合区的概念并对其范围加以界定。由于风水蚀复合区区内气候类型复杂、侵蚀动力多样、风季和雨季的交错分布及其脆弱的生态环境,造成水土流失和沙漠化相当严重,并发育了独特的地貌景观。风水蚀复合区的界限受降水的影响而呈南北摆动,干旱年,向东南方向移动;多雨年,向西北方向移动。  相似文献   

6.
马玉凤  严平  李双权 《中国沙漠》2013,33(4):990-999
本文选择内蒙古十大孔兑区的叭尔洞沟中游河谷段的观测小区开展研究,通过野外调查、气象观测、径流小区观测、地形测量和遥感监测等手段,应用“ 3S” 技术,分析了叭尔洞沟中游河谷小区风水交互侵蚀的过程及其侵蚀产沙贡献率。研究得出:(1)在叭尔洞沟中游河谷小区,以风水两营力作用下的侵蚀量作为衡量该区侵蚀力大小的指标,在2010年,风力侵蚀量与水力侵蚀量之比约为1.8∶1。在147 794 m2观测小区里,风水交互作用下侵蚀率为0.1 kg·m-2。(2)风季,风力的搬运作用为观测区形成的风水交互小系统提供了输入,雨季,洪水的侵蚀作用为系统进行了输出,通过沉积物的侵蚀、搬运和堆积的循环作用,对系统的输入物质进行再分配后输出系统。(3)在1998-2010年的少风多雨时期,叭尔洞沟中游河谷小区,东岸稳定,西岸的凸岸变窄、凹岸拓宽,摆幅变大,河岸沙丘后退,切沟不断发育,水力作用在风水交互侵蚀中贡献突显。  相似文献   

7.
陕西神府矿区束鸡沟流域风蚀水蚀交互作用特征研究   总被引:6,自引:1,他引:5  
以神府矿区束鸡沟为典型小流域,讨论了风蚀水蚀交互作用的时空分布及其特征。风蚀水蚀交互作用在沙质坡面,坡面切沟和沙质沟道区表现最为突出,并形成了风蚀水蚀交互作用特有的侵蚀形态。  相似文献   

8.
威连滩冲沟砂黄土的风蚀与降雨侵蚀模拟实验   总被引:3,自引:0,他引:3  
 通过风洞与模拟降雨实验,研究了风力与降雨对青海省贵南县威连滩冲沟砂黄土的复合侵蚀作用。实验得出:①风蚀后的降雨使砂黄土表面在风干过程中形成了一层较为坚硬的结壳,增大了土壤的抗蚀性,降低了第二次风洞实验后期的风蚀率;②土壤水分与人为扰动是影响土壤风蚀的两个重要因素。当土壤水分较小时,风蚀率受人为扰动影响巨大;当土壤水分较大时,人为扰动对土壤风蚀的影响较小;③在持续降雨的实验条件下,砂黄土的产流、产沙量随着雨强的变化而改变。这种变化与表土的侵蚀率、可蚀性物质的多少、土壤水分以及土壤的入渗率等都有很大的关系。  相似文献   

9.
20世纪末中国土壤侵蚀的空间分布特征   总被引:23,自引:0,他引:23  
许峰  郭索彦  张增祥 《地理学报》2003,58(1):139-146
通过对中国2000年第二次土壤侵蚀遥感调查成果的分析,讨论了20世纪末中国土壤侵蚀空间分布特点。结果表明,水土流失仍然是我国持续影响面最大的环境问题。西部是我国土壤侵蚀的主要分布地区,轻度侵蚀对整个土壤侵蚀格局影响最大。水蚀的分布明显体现出地形的影响,轻度水蚀基本上分布在山地丘陵区 (含黄土地形区),严重水蚀近半分布在黄土地形区。轻度水蚀主要分布在耕地、林地、草地。严重水蚀、轻度风蚀面积均约半数分布在草地,各类草地的保护与整治均应是水、风蚀区水土保持的重要内容。土壤资源中,黄绵土是受到土壤侵蚀威胁最严重的类型。但对我国土壤侵蚀的进一步分析还需要更多对方法和相关数据分析的研究工作。  相似文献   

10.
科尔沁沙地西部响水河河水与其河岸相互作用的初步研究   总被引:1,自引:1,他引:0  
近年来,半干旱地区的风水相互作用正成为风沙地貌研究的新热点,为探讨科尔沁沙地西部响水河河水与其河岸间的相互作用,通过对科尔沁沙地西部响水河的3个典型河段的6个断面的断面形态、流速进行现场实测,同步采集了31个水样,然后在室内对其泥沙含量进行测试,并推算断面流量。结果表明:由南向北3个河段瞬时流量和泥沙含量呈递增的趋势,集水效应十分明显;该河丰水期水量较为丰沛,河流与河岸间的相互作用明显且活跃,主要存在河水掏蚀河岸陡坡等5种相互作用的方式;当下风向陡岸弯道的法线方向与当地盛行风向一致时,气流发生明显汇聚,侵蚀加强,形成风蚀槽,且当风蚀槽接近谷底时,又为曲流的摆动创造了有利条件;河流受到沙丘前移的压迫与下风向河谷陡坡的阻挡,曲流较为发育但不完美,属于非自由曲流。  相似文献   

11.
Complex erosion by wind and water, which is also called aeolian-fluvial interactions, is an important erosion process and landscape in arid and semiarid regions. The effectiveness of links between wind and water process, spatial environmental transitions and temporal environmental change are the three main driving forces determining the geomorphologic significance of aeolian-fluvial interactions. As a complex interrelating and intercoupling system, complex erosion by wind and water has spatial- temporal variation features. The process of complex erosion by wind and water can be divided into palaeoenvironmental process and contemporary process. Early work in drylands has often been attributed to one of two schools advocating either an ‘aeolianist’ or a ‘fluvialist’ perspective, so it was not until the 1930s that the research on complex erosion by wind and water had been conducted. There are two obstacles restricting the research of complex erosion by wind and water. Firstly, how to transform in different temporal and spatial scales is still unsettled; and secondly, the research methodology is still immature. In the future, the mechanism and control of erosion, the complex soil erodibility in wind and water erosion will be the focus of research on complex erosion by wind and water.  相似文献   

12.
风水复合侵蚀研究述评   总被引:2,自引:0,他引:2  
1 Introduction Water erosion and wind erosion are two main types of soil erosion. Water erosion is generally linked with humid climate and wind erosion is connected with arid climate. Whereas, water and wind erosion often occurs simultaneously or alterna…  相似文献   

13.
Wind and water erosion are usually studied as two separate processes. However, in semi-arid zones both processes contribute significantly to soil degradation. Whereas for water erosion the direction of sediment transport is controlled by topography, in wind erosion the direction of transport is controlled by the wind direction. Furthermore, the spatial pattern of erosion and deposition for wind erosion is determined by the spatial distribution of source material, soil erodibility factors and non-erodible roughness elements. Given this difference in dependence on topography, different approaches are needed to determine the mass balance for a given area. For water erosion, the research area has to be defined such that no input of sediment occurs, whereas in wind erosion the input and output fluxes of sediment should be measured, or a non-eroding boundary should be created.In semi-arid regions, wind erosion events are often followed immediately by heavy rain. As wind and water erosion occur almost simultaneously at the same site, the effect of wind and water erosion at a given site should be studied concurrently. To do so, a number of measurement techniques with different spatial and temporal scales are necessary. The research should be started at the scale of a Sahelian field. For a complete insight into the processes at a site, the research should include measurement techniques that quantify the impact of wind and water erosion separately and techniques that quantify their combined effect.  相似文献   

14.
土壤可蚀性研究述评   总被引:19,自引:0,他引:19  
宋阳  刘连友  严平  曹彤 《干旱区地理》2006,29(1):124-131
土壤可蚀性是土壤对侵蚀作用的敏感性。对土壤可蚀性的研究是认识土壤侵蚀机理的一个重要环节。土壤可蚀性可以通过测定土壤的理化性质、水冲、模拟降雨、小区和风洞试验测定,可以使用土壤侵蚀模型与诺谟图计算土壤可蚀性。研究中产生了许多可蚀性指数和计算公式。土壤可蚀性是一个相对的概念,它受空间变化、土壤性质的时间动态变化和人类活动等因素的影响。在土壤可蚀性的研究中存在着一些不足,具体表现为:农田土壤是土壤可蚀性研究的主要对象,区域之间的土壤可蚀性缺乏对比,因此加强对土壤可蚀性机理、实验与风水复合侵蚀作用下土壤可蚀性的研究有着十分重要的意义。  相似文献   

15.
From water to tillage erosion dominated landform evolution   总被引:3,自引:1,他引:3  
While water and wind erosion are still considered to be the dominant soil erosion processes on agricultural land, there is growing recognition that tillage erosion plays an important role in the redistribution of soil on agricultural land. In this study, we examined soil redistribution rates and patterns for an agricultural field in the Belgian loess belt. 137Cs derived soil erosion rates have been confronted with historical patterns of soil erosion based on soil profile truncation. This allowed an assessment of historical and contemporary landform evolution on agricultural land and its interpretation in relation to the dominant geomorphic process. The results clearly show that an important shift in the relative contribution of tillage and water erosion to total soil redistribution on agricultural land has occurred during recent decades. Historical soil redistribution is dominated by high losses on steep midslope positions and concavities as a result of water erosion, leading to landscape incision and steepening of the topography. In contrast, contemporary soil redistribution is dominated by high losses on convex upperslopes and infilling of slope and valley concavities as a result of tillage, resulting in topographic flattening. This shift must be attributed to the increased mechanization of agriculture during recent decades. This study shows that the typical topographical dependency of soil redistribution processes and their spatial interactions must be accounted for when assessing landform and soil profile evolution.  相似文献   

16.
This paper discussed the spatial distribution of soil erosion in China at the end of the 20th century based on the second national soil erosion survey. The result indicated soil erosion is still the prime environmental problem in China. Soil erosion mainly occurs in the western regions of China, and the slight erosion type, ion the whole, exerts the greatest impact on soil erosion pattern. The distribution of water erosion shows the impact of landforms: slight water erosion mainly in mountainous and hilly areas, and half of violent water erosion on the loess landforms. Farmland, forestland and grassland are the major land use types of slight hydraulic erosion distribution, while the serious hydraulic erosion and slight wind erosion mainly occur on grassland. Thus, the conservation of the grassland is the key to either hydraulic and wind erosion control. The huangmian soil (a major type of cultivated soil developed from loess mother material) is the one facing the most serious threat from soil erosion in Chinas soil resources. Further discussion on the soil erosion distribution still needs more research on the method and relevant data analysis.  相似文献   

17.
XU Feng  GUO Suoyan 《地理学报》2002,12(4):435-442
This paper discussed the spatial distribution of soil erosion in China at the end of the 20th century based on the second national soil erosion survey. The result indicated soil erosion is still the prime environmental problem in China. Soil erosion mainly occurs in the western regions of China, and the slight erosion type, ion the whole, exerts the greatest impact on soil erosion pattern. The distribution of water erosion shows the impact of landforms: slight water erosion mainly in mountainous and hilly areas, and half of violent water erosion on the loess landforms. Farmland, forestland and grassland are the major land use types of slight hydraulic erosion distribution, while the serious hydraulic erosion and slight wind erosion mainly occur on grassland. Thus, the conservation of the grassland is the key to either hydraulic and wind erosion control. The huangmian soil (a major type of cultivated soil developed from loess mother material) is the one facing the most serious threat from soil erosion in Chinas soil resources. Further discussion on the soil erosion distribution still needs more research on the method and relevant data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号