首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spatial pattern and influencing factors of landslide casualty events   总被引:1,自引:1,他引:0  
Analysis of casualties due to landslides from 2000 to 2012 revealed that their spatial pattern was affected by terrain and other natural environmental factors, which resulted in a higher distribution of landslide casualty events in southern China than in northern China. Hotspots of landslide-generated casualties were in the western Sichuan mountainous area and Yunnan-Guizhou Plateau region, southeast hilly area, northern part of the loess hilly area, and Tianshan and Qilian Mountains. However, local distribution patterns indicated that landslide casualty events were also influenced by economic activity factors. To quantitatively analyse the influence of natural environment and human-economic activity factors, the Probability Model for Landslide Casualty Events in China (LCEC) was built based on logistic regression analysis. The results showed that relative relief, GDP growth rate, mean annual precipitation, fault zones, and population density were positively correlated with casualties caused by landslides. Notably, GDP growth rate ranked only second to relative relief as the primary factors in the probability of casualties due to landslides. The occurrence probability of a landslide casualty event increased 2.706 times with a GDP growth rate increase of 2.72%. In contrast, vegetation coverage was negatively correlated with casualties caused by landslides. The LCEC model was then applied to calculate the occurrence probability of landslide casualty events for each county in China. The results showed that there are 27 counties with high occurrence probability but zero casualty events. The 27 counties were divided into three categories: poverty-stricken counties, mineral-rich counties, and real-estate overexploited counties; these are key areas that should be emphasized in reducing landslide risk.  相似文献   

2.
Analysis of casualties due to landslides from 2000 to 2012 revealed that their spatial pattern was affected by terrain and other natural environmental factors, which resulted in a higher distribution of landslide casualty events in southern China than in northern China. Hotspots of landslide-generated casualties were in the western Sichuan mountainous area and Yunnan-Guizhou Plateau region, southeast hilly area, northern part of the loess hilly area, and Tianshan and Qilian Mountains. However, local distribution patterns indicated that landslide casualty events were also influenced by economic activity factors. To quantitatively analyse the influence of natural environment and human-economic activity factors, the Probability Model for Landslide Casualty Events in China(LCEC) was built based on logistic regression analysis. The results showed that relative relief, GDP growth rate, mean annual precipitation, fault zones, and population density were positively correlated with casualties caused by landslides. Notably, GDP growth rate ranked only second to relative relief as the primary factors in the probability of casualties due to landslides. The occurrence probability of a landslide casualty event increased 2.706 times with a GDP growth rate increase of 2.72%. In contrast, vegetation coverage was negatively correlated with casualties caused by landslides. The LCEC model was then applied to calculate the occurrence probability of landslide casualty events for each county in China. The results showed that there are 27 counties with high occurrence probability but zero casualty events. The 27 counties were divided into three categories: poverty-stricken counties, mineral-rich counties, and real-estate overexploited counties; these are key areas that should be emphasized in reducing landslide risk.  相似文献   

3.
Landslide hazard assessment, effected by means of geostatistical methods, is based on the analysis of the relationships between landslides and the spatial distributions of some instability factors. Frequently such analyses are based on landslide inventories in which each record represents the entire unstable area and is managed as a single instability landform. In this research, landslide susceptibility is evaluated through the study of a variety of instability landforms: landslides, scarps and areas uphill from crown. The instability factors selected were: bedrock lithology, steepness, topographic wetness index and stream power index. The instability landform densities computed for all the factors, which were arranged in Unique Condition Unit, allowed us to derive a total of three prediction images for each landslide typology. The role of the instability factors and the effects generated by the use of different landforms were analyzed by means of: a) bivariate analysis of the relationships between factors and landslide density; b) predictive power validations of the prediction images, based on a random partition strategy.The test area was the Iato River Basin (North-Western Sicily), whose slopes are moderately involved in flow and rotational slide landslides (219 and 28, respectively). The area is mainly made up of the following complexes: Numidian Flysch clays (19%, 1%), Terravecchia sandy clays (5%, 1%), Terravecchia clayey sands (3%, 0.3%) and San Cipirello marly clays (9%, 0%). The steepness parameter shows the highest landslide density in the [11–19°] class for both the typologies (8%, 1%), even if the density distributions for rotational slides are right-asymmetric and right-shifted. We obtained significant differences in shape when we used different instability landforms. Unlike scarps and areas uphill from crowns, landslide areas produce left-asymmetric and left-shifted density distributions for both the typologies. As far as the topographic wetness index is concerned, much more pronounced differences were detected among the instability landforms of rotational slides. In contrast, the flow landslides produce normal-like density distributions. The latter and the rotational slide landslide areas produce the highest density values in the class [5.5–6.7], despite an abrupt decreasing trend starting from the first class [3.2–4.4], which is generated by the density values of the rotational slide scarps and areas uphill from crowns. The stream power index at the foot of the slopes, which was automatically derived using a GIS-procedure, shows a positive correlation with the landslide densities marked by the maximum classes: [4.8–6.0] for flows, and [6.0–7.2] for rotational slides. The validation procedure results confirmed that the choice of instability landform influences the results of the susceptibility analysis. Furthermore, the validation procedure indicates that: a) the predictive models are generally satisfactory; b) scarps and zones uphill from crown areas are the most diagnostically unstable landforms, for flow and rotational slide landslides respectively.  相似文献   

4.
Probabilistic landslide hazard assessment at the basin scale   总被引:32,自引:9,他引:32  
We propose a probabilistic model to determine landslide hazard at the basin scale. The model predicts where landslides will occur, how frequently they will occur, and how large they will be. We test the model in the Staffora River basin, in the northern Apennines, Italy. For the study area, we prepare a multi-temporal inventory map through the interpretation of multiple sets of aerial photographs taken between 1955 and 1999. We partition the basin into 2243 geo-morpho-hydrological units, and obtain the probability of spatial occurrence of landslides by discriminant analysis of thematic variables, including morphological, lithological, structural and land use. For each mapping unit, we obtain the landslide recurrence by dividing the total number of landslide events inventoried in the unit by the time span of the investigated period. Assuming that landslide recurrence will remain the same in the future, and adopting a Poisson probability model, we determine the exceedance probability of having one or more landslides in each mapping unit, for different periods. We obtain the probability of landslide size by analysing the frequency–area statistics of landslides, obtained from the multi-temporal inventory map. Assuming independence, we obtain a quantitative estimate of landslide hazard for each mapping unit as the joint probability of landslide size, of landslide temporal occurrence and of landslide spatial occurrence.  相似文献   

5.
地形对黄土高原滑坡的影响   总被引:4,自引:0,他引:4  
高分辨率地形与影像数据的缺乏已成为研究地表现象、特征与过程的重要瓶颈。低成本无人机设备和摄影测量技术的发展,打开了地学领域获取高分辨率数据的大门,大大提高了地质灾害野外调查与灾害编目的精度与效率。本文通过无人机野外调查和遥感室内目视解译,构建了一个包含307个黄土滑坡属性的数据库。在此基础上,通过数字地形分析和数理统计等方法,总结归纳了黄土滑坡样本数据的分布规律,探讨了地形对黄土滑坡分布的影响,阐述了地形相对高差对最长滑动距离、滑坡周长、滑坡面积的影响,提出了基于传统经验公式拟合的滑坡规模快速预测公式。结果表明:① 滑坡规模—频率分布具有明显的规律性,不同最大长度、最大宽度和周长的黄土滑坡数量分布均呈现正偏态分布,而不同面积的滑坡数量分布则服从幂函数分布;② 地形对黄土滑坡发育控制作用明显,不同地形高差、平均坡度、坡形的斜坡单元滑坡发育数量差异较大;③ 地形相对高差与滑坡的最长滑距、周长和面积的拟合曲线很好地符合幂律分布规律,但不同地形区的拟合效果有所差异,黄土丘陵区拟合效果最好,黄土高原全区次之,黄土台塬区最差;④ 本文建立的黄土滑坡规模快速预测模型,为黄土滑坡灾害调查提供了经验公式支撑。  相似文献   

6.
宁夏西吉地区滑坡灾害地貌的成因分析   总被引:7,自引:0,他引:7  
单鹏飞 《地理学报》1996,51(6):535-542
宁夏西吉地区滑坡灾害地貌是海原地震区最严重的地形变特征。本文在分析区域滑坡呈 或团块状密集独特分布及其严重灾害特征的基础上,进一步探讨了它的成因机制。表明滑坡地形奕的分布规律不仅受地震烈度的影响,而且还受诸如黄土的自然特征,地质构造,地貌结构和区域新构造运行等自然环境的控制.  相似文献   

7.
GIS支持下的黄土高原地震滑坡区划研究   总被引:20,自引:4,他引:16  
分析了影响黄土滑坡的各项影响因子,利用层次分析法(AHP)确定各影响因子的权重。在GIS支持下,建立包括各因子图的空间数据库,对各因子进行分级赋值,然后进行因子加权叠加分析,完成三种超越概率下(50年超越概率2%、10%和63.5%)黄土高原地震滑坡区划图。黄土地震滑坡灾害最严重地区一个是宁夏南部及与其相邻的甘肃白银地区,另一个是甘肃天水地区。  相似文献   

8.
This paper presents a statistical approach to study the spatial relationship between landslides and their causative factors at the regional level. The approach is based on digital databases, and incorporates such methods as statistics, spatial pattern analysis, and interactive mapping. Firstly, the authors propose an object-oriented conceptual model for describing a landslide event, and a combined database of landslides and environmental factors is constructed by integrating the various databases within such a conceptual framework. The statistical histogram, spatial overlay, and dynamic mapping methods are linked together to interactively evaluate the spatial pattern of the relationship between landslides and their causative factors. A case study of an extreme event in 1993 on Lantau Island indicates that rainfall intensity and the migration of the center of the rainstorm greatly influence the occurrence of landslides on Lantau Island. A regional difference in the relationship between landslides and topography is identified. Most of the landslides in the middle and western parts of the island occurred on slopes with slope angles of 25–35°, while in the eastern part, the corresponding range is 30–35°. Overlaying landslide data with land cover reveals that a large number of landslides occurred in the bareland and shrub-covered area, and in the transition zones between different vegetation types. The proposed approach can be used not only to analyze the general characteristics of such a relationship, but also to depict its spatial distribution and variation, thereby providing a sound basis for regional landslide prediction.  相似文献   

9.
灌溉诱发突发性黄土滑坡机理研究   总被引:1,自引:0,他引:1  
周飞  许强  亓星  巨袁臻  严越 《山地学报》2020,38(1):73-82
系统揭示黑方台突发性黄土滑坡物理力学机理,对滑坡防治具有重要的作用。自上世纪六十年代年黑方台常年的农业灌溉诱发了大量20~40 m厚的饱和突发性黄土滑坡。本研究在野外调查的基础上,通过分析滑坡的变形破坏特征,针对分布范围广、危害性较大的突发性黄土滑坡,利用室内GDS三轴试验和模型试验,分析研究了饱和黄土的应力应变特性及突发性黄土滑坡的力学机制。三轴试验结果表明,当围压小于300 kPa时,饱和黄土可产生完全液化,并处于流塑状态;当围压大于300 kPa时,饱和黄土仅产生部分液化,仍具有一定的抗剪强度。饱和黄土的应力—应变模式均表现为强烈的应变软化—剪缩型,并具有一定的稳态特性。模型试验表明突发性黄土滑坡的变形破坏过程可大致分为底部浸水饱和—毛细水上升—持续蠕动变形—突发性破坏4个阶段。斜坡发生突发性破坏时,孔隙水压力激增,但总应力仍大于孔隙水压力,黄土滑坡发生部分液化,饱和黄土仍具有一定的强度,为突发性黄土滑坡发生提供了应力和能量积累的力学条件。研究从有效应力原理的角度阐述了突发性黄土滑坡的力学机理,可以为滑坡的防治治理提供一定的理论依据。  相似文献   

10.
Probability maps of landslide reactivation are presented for the Pra Bellon landslide located in the southern French Alps based on results obtained with dendrogeomorphic analysis. Spatiotemporal patterns of past landslide activity was derived from tree-ring series of 403 disturbed mountain pine trees growing in the landslide body. In total, 704 growth disturbances were identified in the samples indicating 22 reactivation phases of the landslide body between 1910 and 2011. The mean return period was 4.5 years. Given the spatiotemporal completeness of the reconstruction, probabilities of landslide reactivation were computed and illustrated using a Poisson distribution model and for 5, 20, 50, and 100 years. Probability of landslide reactivation is highest in the central part of the landslide body and increases from 0.13 for a 5-year period to 0.94 for a 100-year period. Conversely, probabilities of reactivation are lower at its margins. The proposed method differs from conventional approaches based on statistical analyses or physical modeling that have demonstrated to have limitations in the prediction of spatiotemporal reactivation of landslides. Our approach is, in contrast, based on extensive data on past landslides and therefore allowed determination of quantitative probability maps of reactivation derived directly from the frequency of past events. This approach is considered a valuable tool for land managers in charge of protecting and forecasting people and their assets from the negative effects of landslides as well as for those responsible for land use planning and management. It demonstrates the reliability of dendrogeomorphic mapping that should be used systematically in forested shallow landslides.  相似文献   

11.
《Geomorphology》2006,73(1-2):131-148
This study used airborne laser altimetry (LiDAR) to examine the surface morphology of two canyon-rim landslides in southern Idaho. The high resolution topographic data were used to calculate surface roughness, slope, semivariance, and fractal dimension. These data were combined with historical movement data (Global Positioning Systems (GPS) and laser theodolite) and field observations for the currently active landslide, and the results suggest that topographic elements are related to the material types and the type of local motion of the landslide. Weak, unconsolidated materials comprising the toe of the slide, which were heavily fractured and locally thrust upward, had relatively high surface roughness, high fractal dimension, and high vertical and lateral movement. The body of the slide, which predominantly moved laterally and consists mainly of undisturbed, older canyon floor materials, had relatively lower surface roughness than the toe. The upper block, consisting of a down-dropped section of the canyon rim that has remained largely intact, had a low surface roughness on its upper surface and high surface roughness along fractures and on its west face (unrelated to landslide motion). The upper block also had a higher semivariance than the toe and body. The topographic data for a neighboring, older and larger landslide complex, which failed in 1937, are similarly used to understand surface morphology, as well as to compare to the morphology of the active landslide and to understand scale-dependent processes. The morphometric analyses demonstrate that the active landslide has a similar failure mechanism and is topographically more variable than the 1937 landslide, especially at scales > 20 m. Weathering and the larger scale processes of the 1937 slide are hypothesized to cause the lower semivariance values of the 1937 slide. At smaller scales (< 10 m) the topographic components of the two landslides have similar roughness and semivariance. Results demonstrate that high resolution topographic data have the potential to differentiate morphological components within a landslide and provide insight into the material type and activity of the slide. The analyses and results in this study would not have been possible with coarser scale digital elevation models (10-m DEM). This methodology is directly applicable to analyzing other geomorphic surfaces at appropriate scales, including glacial deposits and stream beds.  相似文献   

12.
为探究哈尼梯田世界文化景观遗产地核心区滑坡灾害时空分布规律,以Google Earth 0.55 m分辨率的2005、2009、2015年3期遥感影像为基础,结合实地走访调查,建立滑坡数据库,在ArcGIS 10.2平台上计算滑坡点的最邻近指数、K函数曲线及密度分布。结果显示:1)哈尼梯田遗产核心区2005、2009、2015年的滑坡数量分别为184、337和285个,对应最邻近指数为0.556、0.603、0.628;最显著聚集的空间尺度为1 000 m,从聚集向离散分布转变的空间尺度阈值分别为2.9、3.9、3.6 km。2)3个年份滑坡点高密度区占比逐渐增加(2.3%→5.8%→8.3%),中密度区占比亦逐渐增大(15.7%→21.8%→27.9%),低密度区占比逐渐减小(82.0%→72.5%→66.8%)。3)需要重点防范滑坡灾害风险的区域为森林区的西段和东段,村寨区的多依树、硐浦、勐品、水卜龙等地,以及阿勐控河和碧猛河流域内的梯田区。综上,研究区2005-2015年滑坡空间格局发生了显著变化,随着人类活动对地表景观干预程度不断加大,滑坡灾害风险增加了更多的不确定性。  相似文献   

13.
The purpose of the present study is the analysis of landslide risk for roads and buildings in a small test site (20 km2) in the area north of Lisbon (Portugal). For this purpose, an evaluation is performed integrating into a GIS information obtained from multiple sources: (i) landslide hazard; (ii) elements at risk; and (iii) vulnerability. Landslide hazard is assessed on a probabilistic basis for three different types of slope movement (shallow translational slides, translational slides and rotational slides), based on some assumptions such as: (i) the likelihood of future landslide occurrence can be measured through statistical relationships between past landslide distribution and specified spatial data sets considered as landslide predisposing factors; and (ii) the rainfall combination (amount–duration) responsible for past slope instability within the test site will produce the same effects (i.e. same type of landslides and similar total affected area), each time they occur in the future. When the return period of rainfall triggering events is known, different scenarios can be modelled, each one ascribed to a specific return period. Therefore, landslide hazard is quantitatively assessed on a raster basis, and is expressed as the probability for each pixel (25 m2) to be affected by a future landslide, considering a rainfall triggering scenario with a specific return period. Elements at risk within the test site include 2561 buildings and roads amounting to 169 km. Values attributed to elements at risk were defined considering reconstruction costs, following the guidelines of the Portuguese Insurance Institute. Vulnerability is considered as the degree of loss to a given element resulting from the occurrence of a landslide of a given magnitude. Vulnerability depends not only on structural properties of exposed elements, but also on the type of process, and its magnitude; i.e., vulnerability cannot be defined in absolute terms, but only with respect to a specific process (e.g. vulnerability to shallow translational slides). Therefore, vulnerability was classified for the three landslide groups considered on hazard assessment, taking into account: (i) landslide magnitude (mean depth, volume, velocity); (ii) damage levels produced by past landslide events in the study area; and (iii) literature. Finally, a landslide risk analysis considering direct costs was made in an automatic way crossing the following three layers: (i) Probabilistic hazard map for a landslide type Z, considering a particular rainfall triggering scenario whose return period is known; (ii) Vulnerability map (values from 0 to 1) of the exposed elements to landslide type Z; and (iii) Value map of the exposed elements, considering reconstruction costs.  相似文献   

14.
香港岛地区滑坡灾害的时空分布模式   总被引:2,自引:1,他引:2  
李军  周成虎  许增旺 《山地学报》2001,19(3):248-252
香港岛是香港特别行政区开发程度最高的区域,人工滑坡及自然滑坡时常发生。滑坡灾害在时间和空间的分布受多种因素的影响并呈现出一定的规律性,本文利用GEO发布的近十多年的滑坡资料对香港岛地区滑坡灾害的时间、空间和时空分布模式进行了分析。  相似文献   

15.
The distribution of a large number of clay slides in the Målselv valley, northern Norway, is analysed and put into context with the stratigraphic organization of the valley-fill sediments. About 32% of the landslides larger than 104 m3 occur close to the valley margins, where mud is either exposed or at shallow depth. About 57% of the landslides occur mid-valley, where relatively thin (< 15 m) coarse-grained deltaic sediments overlay fine-grained marine and glaciomarine sediments, and about 11% of the landslides occur in front of ice-contact deposits. The slide-prone areas are all characterized by the occurrence of heterogeneous sediments (interbedded clay, silt and sand), in addition to the presence of steep slopes eroded by rivers. The heterogeneous nature of the sediments probably enhanced groundwater drainage and leaching of salts from the clay, increasing sensitivity. Thus, the distribution and organization of the valley-fill sediments and groundwater drainage probably controlled the position of the slide scars and sliding planes. Since deglaciation of the valley (11,500 BP–present), isostatic rebound has enhanced fluvial incision and the creation of steep slopes due to a fall in relative sea level of up to 80 m.Arcuate-shaped, ‘bottleneck’ landslide scars ranging from c. 104 to 107 m3 in size is the dominant morphological signature of the slides, typical for quick clay slides or earth flows involving fluid mud. Their most common triggering mechanism is probably erosion at the toe slopes by the river Målselv or its tributaries. River erosion close to the valley margin, where glaciomarine and marine sediments are present, seems to give the most severe slides. The overall valley-fill organization controls the distribution of clay slides, which may apply to other fjord valleys having similar sediment distribution.  相似文献   

16.
GIS and ANN model for landslide susceptibility mapping   总被引:4,自引:0,他引:4  
1 IntroductionThe population growth and the expansion of settlements and life-lines over hazardous areas exert increasingly great impact of natural disasters both in the developed and developing countries. In many countries, the economic losses and casualties due to landslides are greater than commonly recognized and generate a yearly loss of property larger than that from any other natural disasters, including earthquakes, floods and windstorms. Landslides in mountainous terrain often occur a…  相似文献   

17.
王瑛  林齐根  史培军 《地理学报》2017,72(5):906-917
对中国2000-2012年造成人员伤亡的地质灾害事件进行分析,其空间分布格局受地形等自然环境要素的影响,南多北少,主要位于川西山区和云贵高原地区,东南丘陵地区,北方黄土丘陵,以及祁连山脉和天山山脉等地区,但局部地区的分布格局表明其还受到人为因素影响。构建基于二元Logistic回归的中国地质灾害伤亡事件发生概率模型(CELC),定量分析自然、人为因素的影响程度,结果表明GDP增长率是仅次于地形起伏度的第二大影响因素,GDP增长率每增加2.72%,地质灾害伤亡事件发生的概率变为原来的2.706倍。此外还有多年平均降水、植被覆盖度、岩性、土壤类型、断裂带、产业类型和人口密度等因素。将CELC模型应用于中国县域,计算各个县的地质灾害伤亡事件概率,发现尚未发生但概率较高的县有27个,或为贫困县、或为矿产工业县域,或为房产过度开发县,它们是未来中国需要重点防范地质灾害的县域。  相似文献   

18.
Sedimentary impacts from landslides in the Tachia River Basin, Taiwan   总被引:1,自引:0,他引:1  
Chien-Yuan Chen   《Geomorphology》2009,105(3-4):355-365
A case study of coseismic landslides and post-seismic sedimentary impacts of landslides due to rainfall events was conducted in the Tachia River basin, Taichung County, central Taiwan. About 3000 coseismic landslides occurred in the basin during the ML 7.3 Chi-Chi earthquake in 1999. The deposits from these landslides provided material for numerous debris flows induced by subsequent rainfall events. The estimated 4.1 × 107 m3 of landslide debris produced in the upland area caused sediment deposition in riverbeds, and flash floods inundated downstream areas with sediment during torrential rains. The landslide frequency-size distributions for the coseismic landslides and the subsequent rainfall-induced landslides were analyzed to determine the sediment budgets of the post-seismic geomorphic response in the landslide-dominated basin. Both the coseismic and the rainfall-induced landslides show a power–law frequency-size distribution with a rollover. It was found that the rainfall-induced landslide magnitude was smaller than the coseismic one, and that both have comparable negative scaling exponents in cumulative form, of about − 2.0 for larger landslides (> 10− 2 km2). This may be attributed to ongoing movement or reactivation of old landslides, and a natural stabilisation of small landslides between 10− 4 and 10− 2 km2. It is proposed that the characteristics of geological formations and rainfall as well as changes in landslide area are reflected in the power–law distribution.  相似文献   

19.
GIS and ANN model for landslide susceptibility mapping   总被引:1,自引:0,他引:1  
XU Zeng-wang 《地理学报》2001,11(3):374-381
Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probability of landslides occurrence. A study is presented of the application of GIS and artificial neural network model to landslide susceptibility mapping, with particular reference to landslides on natural terrain in this paper. The method has been applied to Lantau Island, the largest outlying island within the territory of Hong Kong. A three-level neural network model was constructed and trained by the back-propagate algorithm in the geographical database of the study area. The data in the database includes digital elevation modal and its derivatives, landslides distribution and their attributes, superficial geological maps, vegetation cover, the raingauges distribution and their 14 years 5-minute observation. Based on field inspection and analysis of correlation between terrain variables and landslides frequency, lithology, vegetation cover, slope gradient, slope aspect, slope curvature, elevation, the characteristic value, the rainstorms corresponding to the landslide, and distance to drainage line are considered to be related to landslide susceptibility in this study. The artificial neural network is then coupled with the ArcView3.2 GIS software to produce the landslide susceptibility map, which classifies the susceptibility into three levels: low, moderate, and high. The results from this study indicate that GIS coupled with artificial neural network model is a flexible and powerful approach to identify the spatial probability of hazards.  相似文献   

20.
During the last decade the frequency of landslides at river valley slopes eroding into the glaciolacustrine plain in western Estonia has grown considerably. We studied in detail nine recent landslides out of 25 known and recorded sliding events in the area. All landslides occurred at the river banks in otherwise almost entirely flat areas of proglacial deposits capped with marine sands. Glaciolacustrine varved clay is the weakest soil type in the area and holds the largest landslides. Slope stability modelling shows that critical slope gradient for the clay is ≥ 10° and for the marine sand ≥ 20°. Fluvial erosion is the main process in decreasing slope stability at the outer bends of the river meanders. An extra shear stress generated by groundwater flow following the high stand of the groundwater level or rapid water level drawdown in the river channels are responsible for triggering the landslides. Consecutive occurrence of small-scale slides has a direct effect in triggering the large, retrogressive complexes of slides in the glaciolacustrine clay. A landslide hazard zonation map was composed based on digital elevation model and the data on spatial distribution of glaciolacustrine clays and marine sands, and on existing and critical slope angles of these deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号