首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi-proxy analysis of two sediment cores from Rantin Lake are used to reconstruct past lake-level changes and to make inferences about millennial-scale variations in precipitation/evaporation (P/E) balance in the southern Yukon, Canada between 10,900 and 3,100?cal?yr BP. Analyses of calcium carbonate and organic matter concentration, magnetic susceptibility, titanium content, dry bulk density, and macrofossils are used to reconstruct water-level changes. The development of sand layers and deformed sediments at the deep-water core site (i.e. Core A-06) prior to ~10,900?cal?yr BP suggest that lake level was lower at this time. Fine-grained organic sediment deposited from 10,600 to 9,500?cal?yr BP indicates a rise in lake level. The formation of an unconformity at the shallow cores site (Core C-06) and the deposition of shallow-water calcium carbonate-rich facies at the Core A-06 site between ~9,500 and ~8,500?cal?yr BP suggest lower lake levels at this time. Shallow-water facies gradually transition into a sand layer that likely represents shoreline reworking during an extreme lowstand that occurred at ~8,400?cal?yr BP. Following this low water level, fine-grained organic-rich sediment formed by ~8,200?cal?yr BP, suggesting deeper water conditions at core site A-06. Calcium carbonate concentrations are relatively low in sediment deposited from ~6,300 to 3,100?cal?yr BP in Core A-06, indicating that lake level was comparatively higher during the middle and late Holocene. In general, results from this study suggest that the early Holocene was characterized by high P/E from ~10,500 to 9,500?cal?yr BP, low P/E from ~9,500 to 8,400?cal?yr BP, and return to higher P/E from ~8,200 to 3,100?cal?yr BP.  相似文献   

2.
The Kangerlussuaq area of southwest Greenland is a lake-rich landscape that covers a climate gradient: a more maritime, cooler and wetter coastal zone contrasts with a dry, continental interior. Radiocarbon-dated sediment sequences (covering ~11,200?C8,300?cal?year) from paired lakes at the coast and the head of the fjord were analysed for lithostratigraphic variables (organic-matter content, bulk density, Ti, Ca). Minerogenic and carbon accumulation rates from the four lakes were compared to determine catchment and lake response to Holocene climatic variability. Catchment erosion at the coast was dominated by cryonival processes, with considerable sediment production due to the limited vegetation cover and exposed rock faces. Input of minerogenic sediment at one site (AT4) was high (>1?gDW?cm?2?year?1) during the period 5,800?C4,000?cal?year BP, perhaps reflecting intensification of cryogenic processes on northeast-facing slopes and rapid delivery to the lake. This period of erosional activity was not observed at the nearby, higher elevation site (AT1) due to the lower catchment relief; instead, there was an abrupt decline in carbon and minerogenic accumulation rates at ~5,800?cal?year BP. Sediment accumulation rates at the inland sites were much lower (<0.005?gDW?cm?2?year?1) reflecting greater catchment stability (more extensive vegetation cover), lower relief and substantially lower precipitation, but synchronous increases in mineral accumulation rates from ~1,200 to 1,000?cal?year BP may reflect wind erosion associated with regional cooling and local aridity. Carbon-accumulation-rate profiles were similar at the two inland sites, with higher-than-average accumulation (~6?C8?g?C?m?2?year?1) during the early Holocene and a subsequent decline after ~6,000?cal?year BP. At the inland lakes, both mineral and carbon accumulation rates exhibited a stronger link to climate, driven by trends in effective precipitation and regional aeolian activity. Catchment differences (relief, altitude) lead to more individualistic records in both erosion history and lake productivity at the coast.  相似文献   

3.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

4.
Two cores from Trout Lake, northern Yukon, yielded quantitative estimates of summer air temperatures using fossil midge larvae. Warming began around 14,400?cal?yr BP, with inferred mean July air temperatures reaching values warmer than present by 12,800?cal?yr BP. A 1?°C cooling from 12,200 to 11,200?cal?yr BP closely corresponds with the Younger Dryas chronozone. A broad temperature maximum occurred between 10,800 and 9,800?cal?yr BP, with mean July air temperature about 2.2?°C warmer than present. This represents an early Holocene thermal maximum and coincides with increased organic content of the sediment. Both the shallow- and deep-water cores show similar temperature trends for their overlapping periods. The inferred rise in mean July air temperature at 14,200?cal?yr BP coincides with a shift in vegetation from an herb- to shrub-dominated landscape. In contrast, the increase in Alnus pollen at 6,400?cal?yr BP does not coincide with a change in temperature, but may be a response to a rise in precipitation.  相似文献   

5.
Lacustrine records from the northern margin of the East Asian monsoon generate a conflicting picture of Holocene monsoonal precipitation change. To seek an integrated view of East Asian monsoon variability during the Holocene, an 8.5-m-long sediment core recovered in the depocenter of Dali Lake in central-eastern Inner Mongolia was analyzed at 1-cm intervals for total organic and inorganic carbon concentrations. The data indicate that Dali Lake reached its highest level during the early Holocene (11,500–7,600 cal yr BP). The middle Holocene (7,600–3,450 cal yr BP) was characterized by dramatic fluctuations in the lake level with three intervals of lower lake stands occurring 6,600–5,850, 5,100–4,850 and 4,450–3,750 cal yr BP, respectively. During the late Holocene (3,450 cal yr BP to present), the lake displayed a general shrinking trend with the lowest levels at three episodes of 3,150–2,650, 1,650–1,150 and 550–200 cal yr BP. We infer that the expansion of the lake during the early Holocene would have resulted from the input of the snow/ice melt, rather than the monsoonal precipitation, in response to the increase in summer solar radiation in the Northern Hemisphere. We also interpret the rise in the lake level since ca. 7,600 cal yr BP as closely related to increased monsoonal precipitation over the lake region resulting from increased temperature and size of the Western Pacific Warm Pool and a westward shifted and strengthened Kuroshio Current in the western Pacific. Moreover, high variability of the East Asian monsoon climate since 7,600 cal yr BP, marked by large fluctuations in the lake level, might have been directly associated with variations in the intensity and frequency of the El Niño-Southern Oscillation (ENSO) events.  相似文献   

6.
Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000?year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000?years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000?cal?year BP sediments have ??13C values that range from ~?39 to ?31??, suggesting peak methane carbon assimilation at that time. These low ??13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500?cal?year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640?cal?year BP, and fossil chironomids from 1,500?cal?year BP in the core illustrate that ??old?? carbon has also contributed to the development of the aquatic ecosystem since ~1,500?cal?year BP. The relatively low ??13C values of aquatic invertebrates (as low as ?40.5??) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.  相似文献   

7.
Small lakes and wetlands from high elevation within the Sierra Nevada Range (southern Spain) preserve a complete post-glacial Holocene record. Isotopic, TOC and C/N analyses, carried out on a sediment core, show various stages in the evolution of the Borreguiles de la Virgen, which today constitute a small bog at about 2,950?m above sea level. Glacial erosion generated a cirque depression, which became a small lake during the first phase of infilling (from?8,200 to 5,100?cal?yr BP), as suggested by sedimentary evidence, including an atomic C/N ratio generally below 20, low TOC values and the highest ??13C and ??15N values of the record. These results imply significant algal productivity, which is confirmed by the microscopic algal remains. Drier conditions became established progressively in this area from?5,100 to 3,700?cal?yr BP. Subsequently, the lake evolved into a bog as shown by geochemical evidence (C/N ratios above 20, high TOC content and low ??13C values). Unstable conditions prevailed from?3,600 to 700?cal?yr BP; an extremely low sedimentation rate and scarcity of data from this period do not allow us to make a coherent interpretation. Fluctuating conditions were recorded during the last?~700?cal?yr BP, with wetter conditions prevailing during the first part of the interval (with C/N rate below 20) up to 350?years ago. In general, a gradual trend toward more arid conditions occurred since?~6,900?cal?yr BP, with a further increase in aridity since?~5,100?cal?yr BP. This evidence is consistent with other contemporaneous peri-Mediterranean records.  相似文献   

8.
Paleolimnological data are presented on trophic development, climatic change and sea level variations in Negra Lagoon, a 142 km2 coastal lagoon in southern Uruguay. Using a sediment core that extended to the early Holocene, analyses of organic matter, carbonate, diatoms and opal phytoliths allowed us to track changes in trophic state and paleosalinity levels, which were closely related to Holocene sea level variation, temperature and humidity. Diatom Association Zones (DAZ) corresponding to transgressive events were dominated by marine/brackish taxa and relatively low organic matter values, while those DAZ corresponding to regressive events showed increases in brackish/freshwater diatoms and organic matter. Opal Phytoliths Association Zones (OPAZ) also were identified, temperature and humidity indices were calculated, and climatic trends were inferred. During the middle Holocene (i.e., ~5000–4000 yr BP), cool–dry climatic conditions were established. After ~4000 yr BP, a transition from cool to warm–humid conditions was observed, but fully warm humid conditions established only after ~1700 yr BP. Such climatic amelioration led to increases in trophic state.  相似文献   

9.
A 95-cm-thick peat sequence obtained from Daping Swamp in the western Nanling Mountains provides evidence for climate variability in the past ~3,000 year. Multi-proxy records (including organic carbon isotopes, humification degree, organic matter content, and dry bulk density) revealed three intensified Asian summer monsoon (ASM) intervals (i.e.~2900–2700, 2500–1700 and 1000–600 cal. yr BP) and three weakened ASM intervals (i.e.~2800–2500, 1700–1000 and 600–200 cal. yr BP). Our δ13C record shows a possible correlation with the sunspot number and residual atmospheric 14C records on multi-centennial scale, especially for the period between 2960 and 2200 cal. yr BP. A spectral analysis of δ13C record reveals three significant cycles (i.e., 396, 110 and 102 yr) and all these cycles could be related to solar activity, suggesting that solar output may have influenced the late Holocene climate variability in the study region.  相似文献   

10.
Pollen and diatoms preserved in the radiocarbon dated sediments of Two Frog Lake in the Seymour-Belize Inlet Complex of the central mainland coast of British Columbia document postglacial climate change. Two Frog Lake was isolated from the sea prior to 11,040 ± 50 yr BP (13,030 cal. yr BP) when the climate was cool and dry, and open Pinus contorta woodlands covered the landscape. These woodlands were replaced by a mixed conifer forest ca. 10,200 yr BP (ca. 12,300 cal. yr BP) when the climate became moister. A relatively dry and warm early Holocene climate allowed Pseudotsuga menziesii to migrate northward to this site where it grew with Picea, Tsuga heterophylla and Alnus. The climate became cooler and moister at ca. 8,000 yr BP (ca. 9,200 cal. yr BP), approximately 500–1,000 years prior to sites located south of Two Frog Lake and on the Queen Charlotte Islands, but contemporary with sites on the northern mainland coast of British Columbia and south coastal Alaska. Climate heterogeneity in central coastal British Columbia appears to have occurred on a synoptic scale, suggesting that atmospheric dynamics linked to a variable Aleutian Low pressure system may have had an important influence on early Holocene climate change in the Seymour-Belize Inlet Complex. The transition to cooler and moister conditions facilitated the expansion of Cupressaceae and the establishment of a modern-type coastal temperate rainforest dominated by Cupressaceae and T. heterophylla. This was associated with progressive lake acidification. Diatom changes independent of vegetation change during the late Holocene are correlative with the mid-Neoglacial period, when cooler temperatures altered diatom communities.  相似文献   

11.
Paleolimnological data are presented on trophic development, climatic change and sea level variations in Rocha Lagoon, a 72 km2 coastal lagoon in southern Uruguay. Using a sediment core that extended from 7000 to about 3700 yr BP, analyses of organic matter, carbonate, diatoms and chrysophyte cysts were used to track the early Holocene paleolimnological conditions of Rocha Lagoon. Opal phytoliths were also counted and identified, both temperature and humidity indices were calculated, and Opal Phytolith Association Zones (OPAZ) were identified by performing Principal Coordinates Analysis (PCO). Diatom Association Zones (DAZ) corresponding to marine/brackish and brackish/freshwater episodes were closely related to changes in trophic state. Those DAZ representing marine/brackish stages exhibited a lower trophic state than those DAZ dominated by brackish and freshwater diatoms. This highlights that during the first Holocene marine transgression, Rocha Lagoon did not continuously exhibit marine/brackish conditions as reported in previous papers. Instead, three brackish/freshwater episodes related to sea level variation and changes in humidity were identified. The first episode, by ~6000 yr BP, was related to sea level change as no significant changes in either temperature or humidity indices were observed. The second episode, between 5000 and 4400 yr BP, was related to both a sea level decrease and an increase in humidity, as a transition from humid to very humid climate was inferred. Concomitant decreases in salinity and increases in trophic state were also observed. The third episode, after ~4000 yr BP, was related to the end of the first Holocene regressive phase when sea level was slightly below present levels. Further decreases in salinity and increases in trophic state were detected. The paleoclimatic trends inferred in this study were in close agreement with other regional studies on climatic change, as cool temperatures were inferred. However, major changes in humidity were also detected. A humid to very humid climate was inferred for ~7000–4500 yr BP, but the occurrence of a semiarid/arid climate was inferred for ~4500–3700 yr BP. Our data suggest that during transgressive and regressive events there might be higher frequency and lower amplitude sea level oscillations that might lead to changes in salinity and trophic state of coastal aquatic systems. Such oscillations could only be tracked by high resolution analyses of sedimentary records and could be best interpreted with complementary data on paleoclimate. In addition, microfossils such as diatoms and opal phytoliths were shown to be very sensitive to such paleoenvironmental changes.  相似文献   

12.
The evolution and current state of landscapes around Lake Teletskoye have not previously been studied in detail. In the valley of the Malye Chily River, which flows into Lake Teletskoye, the timing of dam failure and draining of two moraine-dammed lakes has been identified. Botanical analysis, ash content determination, and radiocarbon dating of two peat profiles provide insight into postglacial evolution of wetlands related to this landscape. We found clear evidence of the disappearance from the peat of higher vascular species that, today, grows mostly in the plains of Siberia. Correlation of the data obtained with the accepted chronology of the Holocene events in the Russian Altai suggests the following stages of postglacial environmental change in the Malye Chily River valley: (1) the continuation of the Late Würm glaciation degradation (before 7000?cal. yr BP); (2) Holocene Climate Optimum (7000–5000?cal. yr BP); (3) Akkem cooling (5000–4200?cal. yr BP); (4) warm period (4200–3700?cal. yr BP); and (5) Historical cooling (3700–1600?cal. yr BP).  相似文献   

13.
王馨  冉敏  杨运鹏  琚立 《地理科学进展》2022,41(8):1467-1477
近年来,“全新世温度谜题”已经受到全球古气候学者的广泛关注,为了解决这一谜题,需要在全球不同区域进行更多的全新世温度重建。帕米尔高原位于亚洲内陆核心区域,目前有关帕米尔高原全新世气候变化的研究相对较少,且已有的研究主要集中于相对湿度(或降水)变化的研究,而涉及温度变化的成果则相对较少。论文首先研究了表土碳同位素与气候因子之间的相关关系,结果显示帕米尔高原的δ13Corg与温度正相关;进一步在7个AMS 14C测年数据的支持之下,基于175个泥炭δ13Cα-cellulose分析,重建了帕米尔高原过去约5000 a的温度变化历史。结果发现:帕米尔高原晚全新世以来整体呈现波动升温趋势,约5000~3600 cal a BP阶段处于缓慢降温期;约3600~200 cal a BP处于波动升温期;驱动机制分析显示,约3600 cal a BP之前温度下降主要是夏季太阳辐射下降导致的,约3600 cal a BP之后温度上升是由温室气体辐射强迫增强导致的。  相似文献   

14.
This is the first integrated multiproxy study to investigate climate, catchment evolution and lake ecology in South Greenland. A 4-m-long sedimentary sequence from Lake Igaliku (61o 00?? N, 45o 26?? W, 15?m asl) documents major environmental and climatic changes in south Greenland during the last 10?ka. The chronology is based on a 210Pb and 137Cs profile and 28 radiocarbon dates. The paleoenvironmental history is interpreted on the basis of magnetic susceptibility, grain size, total organic carbon, total nitrogen and sulphur, sedimentation rates, pollen, and diatom assemblages. The basal radiocarbon date at ca. 10?cal?ka BP provides a minimum age for the deglaciation of the basin, which is followed by ~500?years of high sedimentation rates in a glacio-marine environment. After the glacio-isostatic emergence of the basin ca. 9.5?cal?ka BP, limnological and terrestrial proxies suggests early warmth, which may have been interrupted by a cold, dry and windy period between 8.6 and 8.1?cal?ka BP. A dry and windy event ~5.3?C4.8?cal?ka BP preceded the Neoglacial transition at Lake Igaliku, which is characterized by a shift toward moister and perhaps cooler conditions ~4.8?cal?ka BP, causing major changes in terrestrial and aquatic ecological conditions. Significant cooling is documented after ~3?cal?ka BP. Since ~1?cal?ka BP the climatic-driven changes were overprinted by the human influence of Norse and recent agriculture.  相似文献   

15.
Lithologic and geochemical data of a core from the Hwajinpo Lagoon, located on the eastern coast of Korea, provided the evolutionary history of the lagoon related to Holocene sea-level changes of the East Sea (Sea of Japan). Grain size analysis, water content analysis, and soft X-ray analysis of core samples were used to reconstruct sedimentary environments, as were total organic carbon, C/N, S and C/S chemical records. Assemblages of mollusc and diatom remains also provided paleoenvironmental information. The reconstruction of paleoenvironments from these multi-proxy data allows the establishment of an evolutionary model of the Hwajinpo Lagoon. The environmental changes of the Hwajinpo Lagoon can be divided into seven different depositional facies: (l) Exposed basement rock; (2) Estuarine; (3) Stagnant brackish lagoon (isolated); (4) Oxic condition lagoon (organic activity); (5) Fresh water lake; (6) Oxic brackish lagoon (recent condition); (7) Prograding river delta. These environmental changes can be related to sea-level change during the Holocene. The trends of sea-level change in the Hwajinpo Lagoon from this study can be compared to those of the Japanese coastal areas located on the other side of the East Sea such as Lakes Shinji and Nakaumi.  相似文献   

16.
We conducted a paleolimnological investigation of late Holocene deposits on a distal, constrained floodplain of the Cauca River, northern Colombia, i.e. the La Caimana sedimentary succession. The record starts sometime between 4,500 and 4,000 cal yr BP, when the first high-energy fluvial events inundated an ancient soil surface. From that time until about 3,260 cal yr BP, a stable and probably seasonal flooding regime was established on the floodplain. From ~3,260 to ~2,800 cal yr BP, ephemeral and shallow swamps developed on the floodplain. Their formation and duration depended on their connection with the Cauca River. From ~2,800 to ~2,400 cal yr BP, fluvial influence became more dominant, establishing a semi-permanent connection between the river and the floodplain. From ~2,400 to 1,400 cal yr BP, episodic formation of ephemeral swamps occurred. During this stage, floodplain lakes displayed high salinity and nutrient concentrations, and possibly alkaline conditions as a consequence of reduced water volume when the connection with the river was reduced or lost completely. A change in the hydrological regime occurred from ~1,400 to ~850 cal yr BP, when high-energy fluvial events were punctuated by periods of reduced flooding that enabled soil formation. Generally, connection with the Cauca River resulted in lake waters with low salinity and nutrient concentration, whereas loss of connection with the river led to lakes with greater salinity and nutrient content. Paleocurrent analyses indicate that flows came predominantly from the Cauca River, suggesting the lakes were formed by the impoundment of La Caimana Creek. The sedimentary succession of La Caimana offers a unique, high-resolution record of the evolution and dynamics of an ancient floodplain of the Cauca River and its aquatic ecosystems.  相似文献   

17.
Paleolimnological data are presented on trophic development in relation to sea level variation in Rocha Lagoon, a 72 km2 coastal lagoon in southern Uruguay. Using sediment cores that extended to ∼20,000 yr BP, analyses of grain size, organic matter, carbonate, total carbon, nutrients, and diatoms allowed us to infer changes in trophic state and paleosalinities, which were closely related to Holocene relative sea level variation. Higher trophic states were observed during regressive events, most probably due to increases in runoff and erosion as regressions progressed. Diatom Association Zones (DAZ) were identified in both cores. Those DAZ corresponding to transgressive events were dominated by marine/brackish taxa and relatively low organic matter and nutrient values, while those DAZ corresponding to regressive events showed increases in brackish/freshwater diatoms and both organic matter and nutrients. Although the lagoon formed after the first Holocene marine transgression, our data indicate the existence of a marine/brackish aquatic system during upper Pleistocene (i.e., before 15,000 yr BP), but by ∼20,000 yr BP, the system was still likely to be a semi-arid terrestrial system.  相似文献   

18.
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.7′ E, 51°39.3′ N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.  相似文献   

19.
There are debates regarding whether a wet and warm climate or a dry and cold climate dominated Holocene fire activity in northern China on the millennial timescale, and when human activities overtook climate change as the dominant control on fire occurrence in the region. Here we present a high-resolution fire history for the past ~15,500 years from a sediment core in Dali Lake, located in the foothills of the Greater Hinggan Mountains, one of the areas of highest fire risk in China. The results demonstrate that fire activity was rare during the last deglaciation (~15,500-11,700 yr BP), gradually increased at the beginning of the Holocene, and reached its highest level during ~9000-5000 yr BP, after which there was a decreasing trend. However, after ~2000 yr BP this decreasing trend ended, and the most prominent feature is a peak in fire activity during the Medieval Warm Period (MWP). Overall, fire activity corresponded well to changes in the East Asian summer monsoon (EASM) precipitation on the millennial timescale during ~15,500-2000 yr BP, but this relationship changed after ~2000 yr BP. We propose that fire activity in northern China on the millennial timescale during ~15,500-2000 yr BP was dominated by the biofuels reserve under the control of the EASM precipitation. In contrast, with the intensification of human activities after ~2000 yr BP, human activity caused a ~62%-73% increase in fire activity, which altered the fire-climate relationship that had previously prevailed in northern China. Our results indicate that a wet-warm climate (increased EASM intensity), rather than a dry-cold climate, was the dominant control on fire activity in northern China during 15,500-2000 yr BP on the millennial timescale, but that human activities played an important role in fire occurrence after ~2000 yr BP.  相似文献   

20.
An 8000-year record of palaeoproductivity, based on the chemical and chironomid stratigraphies from Lake Päijänne, S. Finland, was assessed with respect to known morphometric, climatic and anthropogenic events. A gradual trend of dystrophication and an associated decrease in aquatic production was detected during the Holocene, with the following exceptions: (1) high diatom and chironomid production around 8000-6000 cal yr BP, (2) eutrophication around 2000 cal yr BP, and (3) an anthropogenic signal during the last few decades.The changes in chironomid assemblages, before the past few decades, have mainly been shifts in concentration, but not in species composition. Variation in chironomid production was mainly explained by the accumulations of biogenic silicon, carbon and organic matter. Nutrient availability seems to be important in controlling biogenic silicon, which we use to infer past diatom production. The high production ca. 8000-6000 cal yr BP and the fluctuation in chironomid influx after ca. 2000 cal yr BP, however, were probably caused by the proposed warm/dry and cold/wet conditions during these times, respectively. These results highlight the sensitivity of boreal shield lake ecosystems to climatic forcing. In contrast, the pronounced change in the morphometry of the basin around 7000 cal yr BP had little effect on the trophic state of the lake. The human-induced trophic change during the past few decades has affected the Lake Päijänne ecosystem to an extent never experienced before during the last 8000-years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号