首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes’ sampling, which is much bigger than the normal observation sampling. Therefore, algorithms should be derived to fit GPS orbits to the observation time. Many methods based on interpolation were developed. Using these methods the orbits fit well at the sampling points. However, these methods ig...  相似文献   

2.
Combining the orbits of the IGS Analysis Centers   总被引:1,自引:0,他引:1  
Currently seven Analysis Centers of the International GPS Service for Geodynamics (IGS) are producing daily precise orbits and the corresponding Earth Orientation Parameters (EOP). These individual products are available at several IGS Data Centers (e.g. CDDIS, IGN, SIO, etc.). During 1993 no official IGS orbits were produced, but the routine orbit comparisons by IGS indicated that, after small orientation and scale alignments, the orbit consistency was approaching the 20 cm level (a coordinate RMS), and that some orbit combination should be possible and feasible. An IGS combined orbit could provide a precise and efficient extension of the IERS Terrestrial Reference Frame (ITRF). Another advantage of such a combined orbit would be reliability and precision.Two schemes of orbit combinations are considered here: (a) the first method consists of a weighted averaging process of the earth-fixed satellite positions as produced by the individual Centers; (b) the second method uses the individual IGS orbit files as pseudo-observations in an orbit determination process, where in addition to the initial conditions, different parameter sets may be estimated. Both orbit combination methods have been tested on the January 1993 orbit data sets (GPS weeks 680 and 681) with an impressive agreement at the 5 cm level (coordinate RMS). The quality of the combined orbits is checked by processing a set of continental baselines in two different regions of the globe using different processing softwares. Both types of combined orbits gave similar baseline repeatability of a few ppb in both regions which compared favorably to the best individual orbits in the region.  相似文献   

3.
介绍了GPS/GLONASS组合定位模型,探讨了组合定位解算中的时间系统转化和坐标系统转化的问题,研究了利用Helmert分差分量估计进行验后定权的方法及其步骤,对IGS基准站nano某一天的观测数据进行组合定位解算与分析,认为在GPS/GLONASS组合定位解算中选择1∶0.210 6的权比,能够提高单点定位的精度。  相似文献   

4.
The Center for Orbit Determination in Europe (CODE) has been involved in the processing of combined GPS/GLONASS data during the International GLONASS Experiment (IGEX). The resulting precise orbits were analyzed using the program SORBDT. Introducing one satellites positions as pseudo-observations, the program is capable of fitting orbital arcs through these positions using an orbit improvement procedure based on the numerical integration of the satellites orbit and its partial derivative with respect to the orbit parameters. For this study, the program was enhanced to estimate selected parameters of the Earths gravity field. The orbital periods of the GPS satellites are —in contrast to those of the GLONASS satellites – 2:1 commensurable (P Sid:P GPS) with the rotation period of the Earth. Therefore, resonance effects of the satellite motion with terms of the geopotential occur and they influence the estimation of these parameters. A sensitivity study of the GPS and GLONASS orbits with respect to the geopotential coefficients reveals that the correlations between different geopotential coefficients and the correlations of geopotential coefficients with other orbit parameters, in particular with solar radiation pressure parameters, are the crucial issues in this context. The estimation of the resonant geopotential terms is, in the case of GPS, hindered by correlations with the simultaneously estimated radiation pressure parameters. In the GLONASS case, arc lengths of several days allow the decorrelation of the two parameter types. The formal errors of the estimates based on the GLONASS orbits are a factor of 5 to 10 smaller for all resonant terms. AcknowledgmentsThe authors would like to thank all the organizations involved in the IGS and the IGEX campaign, in particular those operating an IGS or IGEX observation site and providing the indispensable data for precise orbit determination.  相似文献   

5.
研究了GPS历书拟合算法,针对常用算法拟合精度受初值影响较大,且迭代计算一般不能收敛于最小拟合误差的情况,提出了称为"二步法"的改进历书拟合算法。即首先进行短弧拟合,并将拟合结果作为长弧拟合的初值使用;取计算过程中的最小拟合误差对应值代替最终收敛值作为拟合结果。经多组GPS实际轨道拟合试验,结果表明"二步法"拟合精度一般能提高约50%。  相似文献   

6.
The International GNSS Service (IGS) provides Ultra-rapid GPS & GLONASS orbits every 6 h. Each product is composed of 24 h of observed orbits with predicted orbits for the next 24 h. We have studied how the orbit prediction performance varies as a function of the arc length of the fitted observed orbits and the parameterization strategy used to estimate the empirical solar radiation pressure (SRP) effects. To focus on the dynamical aspects of the problem, nearly ideal conditions have been adopted by using IGS Rapid orbits and known earth rotation parameters (ERPs) as observations. Performance was gauged by comparison with Rapid orbits as truth by examining WRMS and median orbit differences over the first 6-h and the full 24-h prediction intervals, as well as the stability of the Helmert frame alignment parameters. Two versions of the extended SRP orbit model developed by the Centre for Orbit Determination in Europe (CODE) were tested. Adjusting all nine SRPs (offsets plus once-per-revolution sines and cosines in each satellite-centered frame direction) for each satellite shows smaller mean sub-daily, scale, and origin translation differences. On the other hand, eliminating the four once-per-revolution SRP parameters in the sun-ward and the solar panel axis directions yields orbit predictions that are much more rotationally stable. We found that observed arc lengths of 40–45 h produce the most stable and accurate predictions during 2010. A combined strategy of rotationally aligning the 9 SRP results to the 5 SRP frame should give optimal predictions with about 13 mm mean WRMS residuals over the first 6 h and 50 mm over 24 h. Actual Ultra-rapid performance will be degraded due to the unavoidable rotational errors from ERP predictions.  相似文献   

7.
GPS精密星历的外推精度分析   总被引:1,自引:0,他引:1  
常志巧  郝金明  张成军 《测绘工程》2006,15(2):27-29,39
列出了轨道拟合和轨道外推所用的摄动力模型,讨论了轨道拟合和轨道积分的过程。利用轨道拟合的方法拟合出高精度的初始轨道参数,在此基础上外推7天的轨道,将结果与IGS提供的最终星历比较,得出GPS轨道的外推精度:每颗卫星都是切向误差最显著,径向和法向的误差不明显;星蚀卫星的轨道外推精度明显低于一般卫星;问题卫星的轨道外推误差特别大。  相似文献   

8.
GPS精密星历插值方法的比较研究   总被引:17,自引:4,他引:17  
GPS高精度测量中通常需要对GPS精密星历进行轨道插值,本文分别采用拉格朗日插值、切比雪夫多项式拟合以及线性逐次Neville插值三种方法对GPS卫星轨道进行了插值,比较了三种方法的特性及插值结果,得出了一些有益结论。  相似文献   

9.
We examine the impact of using seasonal and long-period time-variable gravity field (TVG) models on GPS orbit determination, through simulations from 1994 to 2012. The models of time-variable gravity that we test include the GRGS release RL02 GRACE-derived 10-day gravity field models up to degree and order 20 (grgs20x20), a 4 × 4 series of weekly coefficients using GGM03S as a base derived from SLR and DORIS tracking to 11 satellites (tvg4x4), and a harmonic fit to the above 4 × 4 SLR–DORIS time series (goco2s_fit2). These detailed models are compared to GPS orbit simulations using a reference model (stdtvg) based on the International Earth Rotation Service (IERS) and International GNSS Service (IGS) repro1 standards. We find that the new TVG modeling produces significant along, cross-track orbit differences as well as annual, semi-annual, draconitic and long-period effects in the Helmert translation parameters (Tx, Ty, Tz) of the GPS orbits with magnitudes of several mm. We show that the simplistic TVG modeling approach used by all of the IGS Analysis Centers, which is based on the models provided by the IERS standards, becomes progressively less adequate following 2006 when compared to the seasonal and long-period TVG models.  相似文献   

10.
A New Solar Radiation Pressure Model for GPS Satellites   总被引:11,自引:3,他引:8  
The largest error in currently used GPS orbit models is due to the effect of solar radiation pressure. Over the last few years many improvements were made in modeling the orbits of GPS satellites within the International GPS Service (IGS). Howeer, most improvements were achieved by increasing the number of estimated orbit and/or solar radiation pressure parameters. This increase in the number of estimated satellite parameters weakens the solutions of all estimated parameters (not only orbit parameters). Because of correlations the additional orbit parameters may introduce biases in other estimated quantities, for example the length of day. We present a recently developed solar radiation pressure model for the GPS satellites. This model is based on experiences and results gained at the Center for Orbit Determination in Europe (CODE) in the context of its IGS activities since June 1992. The performance of the new model is almost an order of magnitude better than that of the existing ROCK models. It also allows a reduction of the number of orbit parameters that have to be estimated. ? 1999 John Wiley & Sons, Inc.  相似文献   

11.
CNES (Centre National d’Etudes Spatiales) and CLS (Collecte Localisation Satellites) became an International GNSS Service (IGS) Analysis Center (AC) the 20th of May 2010. Since 2009, we are using the integer ambiguity fixing at the zero-difference level strategy in our software package (GINS/Dynamo) as an alternative to classical differential approaches. This method played a key role among all the improvements in the GPS processing we made during this period. This paper provides to the users the theoretical background, the strategies and the models used to compute the products (GPS orbits and clocks, weekly station coordinate estimates and Earth orientation parameters) that are submitted weekly to the IGS. The practical realization of the two-step, ambiguity-fixing scheme (wide-lane and narrow-lane) is described in detail. The ambiguity fixing improved our orbit overlaps from 6 to 3?cm WRMS in the tangential and normal directions. Since 2008, our products have been also regularly compared to the IGS final solutions by the IGS Analysis Center Coordinator. The joint effects of ambiguity fixing and dynamical model changes (satellite solar radiation pressure and albedo force) improved the consistency with IGS orbits from 35 to 18?mm 3D-WRMS. Our innovative strategy also gives additional powerful properties to the GPS satellite phase clock solutions. Single receiver (zero-difference) ambiguity resolution becomes possible. An overview of the applications is given.  相似文献   

12.
采用了切比雪夫拟合多项式内插IGS精密星历,计算了GPS卫星广播星历轨道误差,比较了其在太阳活动谷值和峰值时的误差,讨论了其与太阳活动状况的关系。  相似文献   

13.
GPS卫星轨道数值积分与广播星历及IGS精密星历的比较   总被引:3,自引:0,他引:3  
本文采用作者自编的SPPORB IT程序,对GPS卫星轨道的运动方程进行Adam s数值积分求解,同时利用广播星历计算卫星轨道坐标,然后将两者结果同IGS精密星历提供的卫星坐标进行比较,并探讨其轨道误差,计算结果显示广播星历与精密星历差值在2m左右,而数值积分与精密星历的差值在2 cm左右,进一步的分析表明前者误差较大是没有考虑卫星所受的太阳光压、日月引力等影响,而后者考虑了这些影响。鉴于IGS提供的是地固系坐标,而本文数值积分是在惯性系坐标系下进行的,因此本文还举例对惯性坐标系和地固系之间的坐标转换进行了描述。最后,通过实例说明SPPORB IT程序的稳定性以及Adam s数值积分方法的有效性。  相似文献   

14.
Different types of GPS clock and orbit data provided by the International GPS Service (IGS) have been used to assess the accuracy of rapid orbit determination for satellites in low Earth orbit (LEO) using spaceborne GPS measurements. To avoid the need for reference measurements from ground-based reference receivers, the analysis is based on an undifferenced processing of GPS code and carrier-phase measurements. Special attention is therefore given to the quality of GPS clock data that directly affects the resulting orbit determination accuracy. Interpolation of clock data from the available 15 min grid points is identified as a limiting factor in the use of IGS ultra-rapid ephemerides. Despite this restriction, a 10-cm orbit determination accuracy can be obtained with these products data as demonstrated for the GRACE-B spacecraft during selected data arcs between 2002 and 2004. This performance may be compared with a 5-cm orbit determination accuracy achievable with IGS rapid and final products using 5 min clock samples. For improved accuracy, high-rate (30 s) clock solutions are recommended that are presently only available from individual IGS centers. Likewise, a reduced latency and more frequent updates of IGS ultra-rapid ephemerides are desirable to meet the requirements of upcoming satellite missions for near real-time and precise orbit determination.  相似文献   

15.
多系统全球导航卫星系统(Global Navigation Satellite System,GNSS)精密轨道确定及其预报是实现高精度实时精密定位的前提。针对多GNSS系统超快速轨道解算时效性及轨道预报精度随时间下降的问题,提出一种基于分块递推最小二乘配置方法,该方法通过对动力学和几何学待估参数松弛、连接以及轨道状态参数转移递推,能够同时兼容事后及实时滤波定轨方法。该方法能够有效地提高多GNSS系统轨道解算效率,缩短实时轨道更新时间。基于全球实测数据验证了该方法的可靠性和有效性,轨道精度优于国际GNSS服务组织发布的GPS超快速轨道及德国地学研究中心发布的超快速轨道,实验结果表明,采用该方法,GPS/GLONASS/Galileo/BDS四系统120个地面测站精密定轨可以实现1 h更新,延迟30 min发布,统计GPS/GLONASS/Galileo/BDS实时轨道可用部分3D均方根分别为2.8 cm、8.5 cm、5.0 cm及11.5 cm(IGSO/MEO)。目前,1 h更新多GNSS系统轨道及实时产品服务系统已业务化发布,较之前发布的3 h更新及6 h更新轨道分别有20%~40%的精度提升。  相似文献   

16.
广播星历参数拟合算法研究   总被引:7,自引:0,他引:7  
导航卫星一般采用近圆轨道,当卫星轨道偏心率或者轨道倾角接近于0时,利用GPS卫星开普勒轨道根数拟合卫星广播星历会出现一些问题。当高轨卫星轨道偏心率接近0时,广播星历拟合精度下降甚至拟合失败,为此本文提出了减少拟合参数个数、固定轨道根数M0或者延长星历参数拟合弧段长度的方法;针对GEO卫星在小倾角情况下,广播星历可能拟合失败的情况,本文提出了改变坐标系参考轨道面,在新的坐标系下拟合广播星历的方法。结果表明,改进后的拟合方法能适用于各种类型的导航卫星轨道,拟合精度在cm级或者mm级。  相似文献   

17.
在精密定轨和轨道外推理论的基础上,对比分析了由IGS快速轨道(IGS rapid orbit,IGR)外推1d的轨道与IGS最终轨道间的差异,用此外推轨道和最终轨道分别按长基线双差网解方案计算了BRUS、IENG、PTBB等欧洲一些IGS/TAI站的天顶湿延迟(zenith wet delay,ZWD),并对两种轨道下各站的ZWD进行了对比。轨道对比结果显示,除异常卫星外,“病态”卫星的IGR外推1d的轨道仍具有一定的高精度。而ZWD的对比结果则表明,当剔除异常卫星的影响并对“病态”卫星加以适当处理后,IGR外推1d的轨道用于对流层实时监测是可行的。  相似文献   

18.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

19.
Sub-daily alias and draconitic errors in the IGS orbits   总被引:6,自引:2,他引:4  
Harmonic signals with a fundamental period near the GPS draconitic year (351.2 days) and overtones up to at least the sixth multiple have been observed in the power spectra of nearly all products of the International GNSS Service (IGS), including station position time series, apparent geocenter motions, orbit jumps between successive days, and midnight discontinuities in earth orientation parameter (EOP) rates. Two main mechanisms have been suggested for the harmonics: mismodeling of orbit dynamics and aliasing of near-sidereal local station multipath effects. Others have studied the propagation of local multipath errors into draconitic position variations, but orbit-related processes have been less examined. We elaborate our earlier analysis of GPS day-boundary orbit discontinuities where we observed some draconitic features as well as prominent spectral bands near 29-, 14-, 9-, and 7-day periods. Finer structures within the sub-seasonal bands fall close to the expected alias frequencies for 24-h sampling of sub-daily EOP tide lines but do not coincide precisely. While once-per-revolution empirical orbit parameters should strongly absorb any sub-daily EOP tide errors due to near-resonance of their respective periods, the observed differences require explanation. This has been done by simulating EOP tidal errors and checking their impact on a long series of estimated daily GPS orbits and EOPs. Indeed, simulated tidal aliases are found to be very similar to the observed IGS orbital features in the sub-seasonal bands. Moreover and unexpectedly, some low draconitic harmonics were also produced, potentially a source for the widespread errors in most IGS products. The results from this study are further evidence for the need of an improved sub-daily EOP tide model.  相似文献   

20.
Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level. Additional TRF test solutions demonstrate that K-Band Range-Rate observations between both GRACE spacecrafts are crucial for accurately estimating the dynamic frame’s orientation, and reveal the importance of the NNT- and NNR-conditions imposed for estimating the components of the dynamic geocenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号