首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sebastiscus marmoratus is an important sedentary ovoviparous fish distributed in near-shore coastal waters from the coast of China to Japan. Candidate S. marmoratus microsatellite markers were developed in the present study using 454 pyrosequencing, and the marker profile was analyzed. A total of 2 000 000 raw sequence reads were assembled to reduce redundancy. Among them, 1 043 dinucleotide, 925 trinucleotide, 692 tetranucleotide, and 315 pentanucleotide repeats were detected. AC repeats were the most frequent motifs among the dinucleotide repeats, and AAT was the most abundant among the trinucleotide repeats. AAAT, ATAG, and ATCC were the three most common tetranucleotide motifs, and AAGAT and AATAT were the most dominant pentanucleotide motifs. The greatest numbers of loci and potentially amplifiable loci were found in dinucleotide repeats, whereas trinucleotide repeats had the fewest. In summary, a wide range of candidate microsatellite markers were identified in the present study using a rapid and efficient 454 pyrosequencing approach.  相似文献   

2.
The expressed sequence tags (ESTs) of Japanese flounder, Paralichthys olivaceus, were selected from GenBank to identify simple sequence repeats (SSRs) or microsatellites. A bioinformatic analysis of 11111 ESTs identified 751 SSR-containing ESTs, including 440 dinucleotide, 254 trinucleotide, 53 tetranucleotide, 95 pentanucleotide and 40 hexanucleotide microsatellites respectively. The CA/TG and GA/TC repeats were the most abundant microsatellites. AT-rich types were predominant among trinucleotide and tetranucleotide microsatellites. PCR primers were designed to amplify 10 identified microsatellites loci. The PCR results from eight pairs of primers showed polymorphisms in wild populations. In 30 wild individuals, the mean observed and expected heterozygosities of these 8 polymorphic SSRs were 0.71 and 0.83 respectively and the average PIC value was 0.8. These microsatellite markers should prove to be a useful addition to the microsatellite markers that are now available for this species.  相似文献   

3.
Microsatellites or simple sequence repeats (SSR) function widely and locate dependently in genome. However, their characteristics are often ignored due to the lack of genomic sequences of most species. Kelp (Saccharina japonica), a brown macroalga, is extensively cultured in China. In this study, the genome of S. japonica was surveyed using an Illumina sequencing platform, and its microsatellites were characterized. The preliminarily assembled genome was 469.4 Mb in size, with a scaffold N50 of 20529 bp. Among the 128370 identified microsatellites, 90671, 25726 and 11973 were found in intergenic regions, introns and exons, averaging 339.3, 178.8 and 205.4 microsatellites per Mb, respectively. These microsatellites distributed unevenly in S. japonica genome. Mononucleotide motifs were the most abundant in the genome, while trinucleotide ones were the most prevalent in exons. The microsatellite abundance decreased significantly with the increase of motif repeat numbers, and the microsatellites with a small number of repeats accounted for a higher proportion of the exons than those of the intergenic regions and introns. C/G-rich motifs were more common in exons than in intergenic regions and introns. These characteristics of microsatellites in S. japonica genome may associate with their functions, and ultimately their adaptation and evolution. Among the 120140 pairs of designed microsatellite primers, approximately 75% were predicted to be able to amplify S. japonica DNA. These microsatellite markers will be extremely useful for the genetic breeding and population evolution studies of kelp.  相似文献   

4.
The kuruma prawn, Marsupenaeus japonicus, is one of the most cultivated and consumed species of shrimp. However, very few molecular genetic/genomic resources are publically available for it. Thus, the characterization and distribution of simple sequence repeats (SSRs) remains ambiguous and the use of SSR markers in genomic studies and marker-assisted selection is limited. The goal of this study is to characterize and develop genome-wide SSR markers in M. japonicus by genome survey sequencing for application in comparative genomics and breeding. A total of 326 945 perfect SSRs were identified, among which dinucleotide repeats were the most frequent class (44.08%), followed by mononucleotides (29.67%), trinucleotides (18.96%), tetranucleotides (5.66%), hexanucleotides (1.07%), and pentanucleotides (0.56%). In total, 151 541 SSR loci primers were successfully designed. A subset of 30 SSR primer pairs were synthesized and tested in 42 individuals from a wild population, of which 27 loci (90.0%) were successfully amplified with specific products and 24 (80.0%) were polymorphic. For the amplified polymorphic loci, the alleles ranged from 5 to 17 (with an average of 9.63), and the average PIC value was 0.796. A total of 58 256 SSR-containing sequences had significant Gene Ontology annotation; these are good functional molecular marker candidates for association studies and comparative genomic analysis. The newly identified SSRs significantly contribute to the M. japonicus genomic resources and will facilitate a number of genetic and genomic studies, including high density linkage mapping, genome-wide association analysis, marker-aided selection, comparative genomics analysis, population genetics, and evolution.  相似文献   

5.
Blood clam, Tegillarca granosa, is an important shellfish in Chinese mariculture industry. Investigative research in this species, such as genetic linkage mapping, requires a large panel of molecular markers. In present study, a total of 89 polymorphic microsatellite markers were developed in T. granosa using the sequence database of Life Sciences Technology 454 next generation sequencing technology. All 89 loci were characterized in 20 individual clams from a natural population inhabiting Yueqing Gulf, Zhejiang Province, China. The number of alleles per polymorphic locus varied between 2 and 15, while the observed heterozygosity, expected heterozygosity and polymorphic information content varied between 0.000 and 1.000, 0.102 and 0.921, and 0.048 and 0.886, respectively. Of the 89 loci identified, 32 loci deviated significantly from Hardy-Weinberg equilibrium following Bonferroni correction. Thirty nine markers, which were shown to be polymorphic in a full-sibling family, were tested in Mendelian segregations. As expected, 32 loci were co-dominantly segregated in a Mendelian fashion. These novel developed microsatellite markers represent useful research tools for investigation of population genetic structure and genetic diversity in this species.  相似文献   

6.
In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese flounder (Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. olivaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis (BSA) and quantitative trait loci (QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333 (♀: F0768 ×♂: F0915) (Nomenclature rule: F+year+family number) were used to detect simple sequence repeats (SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers (Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group (LG)-1 exhibited a significant difference between DNA, pooled/bulked from the resistant and susceptible groups (P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of significance in LG1, where 17 and 18 SSR markers were identified, respectively. Each model found three resistance-related QTLs by composite interval mapping (CIM). These six QTLs, designated qE1–6, explained 16.0%–89.5% of the phenotypic variance. Two of the QTLs, qE-2 and qE-4, were located at the 66.7 cM region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese flounder in the future.  相似文献   

7.
A cultured female half-smooth tongue sole (Cynoglossus semilaevis) was crossed with a wild male, yielding the first filial generation of pseudo-testcrossing from which 200 fish were randomly selected to locate the Vibrio anguillarum resistance trait in half-smooth tongue sole at its microsatellite linkage map. In total, 129 microsatellites were arrayed into 18 linkage groups, ≥4 each. The map reconstructed was 852.85 cM in length with an average spacing of 7.68 cM, covering 72.07% of that expected (1 183.35 cM). The V. anguillarum resistance trait was a composite rather than a unit trait, which was tentatively partitioned into Survival time in Hours After V. anguillarum Infection (SHAVI) and Immunity of V. Anguillarum Infection (IVAI). Above a logarithm of the odds (LOD) threshold of 2.5, 18 loci relative to SHAVI and 3 relative to IVAI were identified. The 3 loci relative to IVAI explained 18.78%, 5.87% and 6.50% of the total phenotypic variation in immunity. The microsatellites bounding the 3 quantitative trait loci (QTLs) of IVAI may in future aid to the selection of V. anguillarum-immune half-smooth tongue sole varieties, and facilitate cloning the gene(s) controlling such immunity.  相似文献   

8.
The microsatellite-enriched library was constructed using magnetic bead hybridization selection method, and the microsatellite DNA sequences were analyzed in Pacific abalone Haliotis discus hannai. Three hundred and fifty white colonies were screened using PCR-based technique, and 84 clones were identified to potentially contain microsatellite repeat motif. The 84 clones were sequenced, and 42 microsatellites and 4 minisatellites with a minimum of five repeats were found (13.1% of white colonies screened). Besides the motif of CA contained in the oligoprobe, we also found other 16 types of microsatellite repeats including a dinucleotide repeat, two tetranucleotide repeats, twelve pentanucleotide repeats and a hexanucleotide repeat. According to Weber(1990), the microsatellite sequences obtained could be categorized structurally into perfect repeats (73.3%), imperfect repeats(13.3%), and compound repeats (13.4%). Among the microsatellite repeats, relatively short arrays (< 20 repeats) were most abundant,accounting for 75.0%. The largest length of microsatellites was 48 repeats, and the average number of repeats was 13.4. The data on the composition and length distribution of microsatellites obtained in the present study can be useful for choosing the repeat motifs for microsatetlite isolation in other abalone species.  相似文献   

9.
1 Introduction Microsatellites or simple sequence repeats (SSRs) are tandemly repeated motifs of one to six bases found in all prokaryotic and eukaryotic genomes analysed to date (Zane et al., 2002). Due to their hyper-variable and co-dominant nature, relatively high abundance and random distribution in the genome, microsatellites are among the most efficient class of molecular markers. Such repeats display high polymorphism because of variation in repeat length and can be rapidly analysed t…  相似文献   

10.
The microsatellite-enriched library was constructed using magnetic bead hybridization selection method, and the microsatellite DNA sequences were analyzed in Pacific abalone Haliotis discus hannai. Three hundred and fifty white colonies were screened using PCR-based technique, and 84 clones were identified to potentially contain microsatellite repeat motif. The 84 clones were sequenced, and 42 microsatellites and 4 minisatellites with a minimum of five repeats were found (13.1% of white colonies screened). Besides the motif of CA contained in the oligoprobe, we also found other 16 types of microsatellite repeats including a dinucleotide repeat, two tetranucleotide repeats, twelve pentanucleotide repeats and a hexanucleotide repeat. According to Weber(1990), the microsatellite sequences obtained could be categorized structurally into perfect repeats (73.3%), imperfect repeats(13.3%), and compound repeats (13.4%). Among the microsatellite repeats, relatively short arrays (< 20 repeats) were most abundant,accounting for 75.0%. The largest length of microsatellites was 48 repeats, and the average number of repeats was 13.4. The data on the composition and length distribution of microsatellites obtained in the present study can be useful for choosing the repeat motifs for microsatetlite isolation in other abalone species.  相似文献   

11.
12.
Microsatellites are a ubiquitous component of the eukaryote genome and constitute one of the most popular sources of molecular markers for genetic studies. However, no data are currently available regarding microsatellites across the entire genome in oysters, despite their importance to the aquaculture industry. We present the fi rst genome-wide investigation of microsatellites in the Pacifi c oyster Crassostrea gigas by analysis of the complete genome, resequencing, and expression data. The Pacifi c oyster genome is rich in microsatellites. A total of 604 653 repeats were identifi ed, in average of one locus per 815 base pairs(bp). A total of 12 836 genes had coding repeats, and 7 332 were expressed normally, including genes with a wide range of molecular functions. Compared with 20 different species of animals, microsatellites in the oyster genome typically exhibited 1) an intermediate overall frequency; 2) relatively uniform contents of(A)n and(C)n repeats and abundant long(C)n repeats(≥24 bp); 3) large average length of(AG)n repeats; and 4) scarcity of trinucleotide repeats. The microsatellite-fl anking regions exhibited a high degree of polymorphism with a heterozygosity rate of around 2.0%, but there was no correlation between heterozygosity and microsatellite abundance. A total of 19 462 polymorphic microsatellites were discovered, and dinucleotide repeats were the most active, with over 26% of loci found to harbor allelic variations. In all, 7 451 loci with high potential for marker development were identifi ed. Better knowledge of the microsatellites in the oyster genome will provide information for the future design of a wide range of molecular markers and contribute to further advancements in the fi eld of oyster genetics, particularly for molecular-based selection and breeding.  相似文献   

13.
There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia (Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia (O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, igf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.  相似文献   

14.
15.
Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding programs in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8–20.6, and a mean expected heterozygosity of 0.902–0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a relatively large number of broodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided important information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.  相似文献   

16.
The wetlands on the Zoige Plateau have experienced serious degradation, with most of the original marsh being converted to marsh meadow or meadow. Based on the 3 wetland degradation stages, we determined the effects of wetland degradation on the structure and relative abundance of nitrogen-cycling (nitrogen-fixing, ammonia-oxidizing, and denitrifying) microbial communities in 3 soil types (intact wetland: marsh soil; early degrading wetland: marsh meadow soil; and degraded wetland: meadow soil) using 454-pyrosequencing. The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types. Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogen-fixing and denitrifying microbial bacteria differed at the class, order, family, and genus levels among the 3 soil types. At the genus level, the majority of nitrogen-fixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils; whereas those related to Geobacter originated from meadow soil. The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh (except for the 40-60 cm layer), marsh meadow and meadow soils; whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil. The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils; whereas those related to Herbaspirillum originated from meadow soil. The distribution of operational taxonomic units (OTUs) and species were correlated with soil type based upon Venn and Principal Coordinates Analysis (PCoA). Changes in soil type, caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing, ammonia-oxidizing, and denitrifying microbial communities.  相似文献   

17.
18.
Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10~(–6)x~2 + 0.0228 x + 0.0211(R~2 = 0.9994,P 0.05),and a power function model R? = 10.394?~(0.2153)(R~2 = 0.9759,P 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km~2) and the ?,with the highest R~2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.  相似文献   

19.
Copepods are among the most abundant and successful metazoans in the marine ecosystem. However, genomic resources related to fundamental cellular processes are still limited in this particular group of crustaceans. Ribosomal proteins are the building blocks of ribosomes, the primary site for protein synthesis. In this study, we characterized and analyzed the c DNAs of cytoplasmic ribosomal proteins(c RPs) of two calanoid copepods, P seudodiaptomus poplesia and A cartia pacifi ca. We obtained 79 c RP c DNAs from P. poplesia and 67 from A. pacifi ca by c DNA library construction/sequencing and rapid amplifi cation of c DNA ends. Analysis of the nucleic acid composition showed that the copepod c RP-encoding genes had higher GC content in the protein-coding regions(CDSs) than in the untranslated regions(UTRs), and single nucleotide repeats(3 repeats) were common, with "A" repeats being the most frequent, especially in the CDSs. The 3′-UTRs of the c RP genes were signifi cantly longer than the 5′-UTRs. Codon usage analysis showed that the third positions of the codons were dominated by C or G. The deduced amino acid sequences of the c RPs contained high proportions of positively charged residues and had high p I values. This is the fi rst report of a complete set of c RP-encoding genes from copepods. Our results shed light on the characteristics of c RPs in copepods, and provide fundamental data for further studies of protein synthesis in copepods. The copepod c RP information revealed in this study indicates that additional comparisons and analysis should be performed on different taxonomic categories such as orders and families.  相似文献   

20.
There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(?21) used as a tail on each locus-specific forward primer and a single universal primer M13(?21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号