首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   18篇
  国内免费   5篇
测绘学   14篇
大气科学   47篇
地球物理   185篇
地质学   208篇
海洋学   29篇
天文学   40篇
自然地理   30篇
  2019年   4篇
  2018年   10篇
  2017年   10篇
  2016年   19篇
  2015年   10篇
  2014年   22篇
  2013年   25篇
  2012年   22篇
  2011年   18篇
  2010年   26篇
  2009年   21篇
  2008年   19篇
  2007年   12篇
  2006年   15篇
  2005年   20篇
  2004年   14篇
  2003年   12篇
  2002年   10篇
  2001年   13篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   6篇
  1982年   10篇
  1981年   4篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1977年   5篇
  1974年   10篇
  1967年   5篇
  1966年   4篇
  1965年   5篇
  1958年   4篇
  1957年   6篇
  1954年   5篇
排序方式: 共有553条查询结果,搜索用时 31 毫秒
81.
Dietze M  Dietrich P 《Ground water》2012,50(3):450-456
Detailed information on vertical variations in hydraulic conductivity (K) is essential to describe the dynamics of groundwater movement at contaminated sites or as input data used for modeling. K values in high vertical resolution should be determined because K tends to be more continuous in the horizontal than in the vertical direction. To determine K in shallow unconsolidated sediments and in the vertical direction, the recently developed direct-push injection logger can be used. The information obtained by this method serves as a proxy for K and has to be calibrated to obtain quantitative K values of measured vertical profiles. In this study, we performed direct-push soil sampling, sieve analyses and direct-push slug tests to obtain K values in vertical high resolution. Using the results of direct-push slug tests, quantitative K values obtained by the direct-push injection logger could be determined successfully. The results of sieve analyses provided lower accordance with the logs due to the inherent limitations of the sieving method.  相似文献   
82.
To quantify landscape change resulting from processes of erosion and deposition and to establish spatially distributed sediment budgets, ‘models of change’ can be established from a time series of digital elevation models (DEMs). However, resolution effects and measurement errors in DEMs may propagate to these models. This study aimed to evaluate and to modify remotely‐sensed DEMs for an improved quantification of initial sediment mass changes in an artificially‐created catchment. DEMs were constructed from photogrammetry‐based, airborne (ALS) and ground‐based laser scanning (TLS) data. Regions of differing morphological characteristics and vegetation cover were delineated. Three‐dimensional (3D) models of volume change were established and mass change was derived from these models. DEMs were modified region‐by‐region for rill, interrill and alluvial areas, based on logical and hydro‐geomorphological principles. Additional DEMs were constructed by combining multi‐source, modified data. Models were evaluated by comparison with d‐GPS reference data and by considering sediment budget plausibility. Comprehensive evaluation showed that DEM usability depends on a relation between the technique used to obtain elevation data, surface morphology and vegetation cover characteristics. Photogrammetry‐based DEMs were suited to quantification of change in interrill areas but strongly underestimated surface lowering in erosion rills. TLS DEMs were best suited to rill areas, while ALS DEMs performed best in vegetation‐covered alluvial areas. Agreement with reference data and budget plausibility were improved by modifications to photogrammetry‐ and TLS‐based DEMs. Results suggest that artefacts in DEMs can be reduced and hydro‐geomorphic surface structures can be better represented by applying region‐specific modifications. Photogrammetry‐based DEMs can be improved by combining higher and lower resolution data in defined structural units and applying modifications based on principles given by characteristic hydro‐geomorphic evolution. Results of the critical comparative evaluation of remotely‐sensed elevation data can help to better interpret DEM‐based quantifications of earth‐surface processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
83.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   
84.
A vertical crustal uplift rate of 39 mm yr? 1 is measured between 2003 and 2006 using Global Positioning System (GPS) measurements at the northeastern edge of the Southern Patagonia Icefield (SPI). This is the largest present-day glacial isostatic rate ever recorded. The combination of SPI's rapid melting and the unique regional slab-window tectonics that promotes a relatively low viscosity, is central to our interpretation of the observations. The two effects lead to a strong interaction of short relaxation times with ice loads that change on a comparable time scale. The profile of GPS observations link ice loss to the soft viscoelastic isostatic flow response over the time scale of the Little Ice Age (LIA), including ice loss in the period of observation. The agreement of the results with our model predictions strongly suggests the large crustal uplift in Patagonia is due an accelerated glacier wasting since the termination of the LIA and that the effective regional mantle viscosity is near 4.0–8.0 × 1018 Pa s. A century-long diminution of the icefields, at rates that are about 1/4 – 1/2 the contemporary loss rates, is consistent with multidecadal-scale temperature trends estimated for the past 50–100 years and is, in fact, a key feature in any model capable of explaining the uplift data.  相似文献   
85.
The San José district is located in the northwest part of the Deseado massif and hosts a number of epithermal Ag–Au quartz veins of intermediate sulfidation style, including the Huevos Verdes vein system. Veins are hosted by andesitic rocks of the Bajo Pobre Formation and locally by rhyodacitic pyroclastic rocks of the Chon Aike Formation. New 40Ar/39Ar constraints on the age of host rocks and mineralization define Late Jurassic ages of 151.3 ± 0.7 Ma to 144.7 ± 0.1 Ma for volcanic rocks of the Bajo Pobre Formation and of 147.6 ± 1.1 Ma for the Chon Aike Formation. Illite ages of the Huevos Verdes vein system of 140.8 ± 0.2 and 140.5 ± 0.3 Ma are 4 m.y. younger than the volcanic host rock unit. These age dates are among the youngest reported for Jurassic volcanism in the Deseado massif and correlate well with the regional context of magmatic and hydrothermal activity. The Huevos Verdes vein system has a strike length of 2,000 m, with several ore shoots along strike. The vein consists of a pre-ore stage and three main ore stages. Early barren quartz and chalcedony are followed by a mottled quartz stage of coarse saccharoidal quartz with irregular streaks and discontinuous bands of sulfide-rich material. The banded quartz–sulfide stage consists of sulfide-rich bands alternating with bands of quartz and bands of chlorite ± illite. Late-stage sulfide-rich veinlets are associated with kaolinite gangue. Ore minerals are argentite and electrum, together with pyrite, sphalerite, galena, chalcopyrite, minor bornite, covellite, and ruby silver. Wall rock alteration is characterized by narrow (< 3 m) halos of illite and illite/smectite next to veins, grading outward into propylitic alteration. Gangue minerals are dominantly massive quartz intergrown with minor to accessory adularia. Epidote, illite, illite/smectite, and, preferentially at deeper levels, Fe-chlorite gangue indicate near-neutral pH hydrothermal fluids at temperatures of >220°C. Kaolinite occurring with the late sulfide-rich veinlet stage indicates pH < 4 and a temperature of <200°C. The Huevos Verdes system has an overall strike of 325°, dipping on average 65° NE. The orientations of individual ore shoots are controlled by vein strike and intersecting north-northwest-striking faults. We propose a structural model for the time of mineralization of the San José district, consisting of a conjugate shear pair of sinistral north-northwest- and dextral west-northwest-striking faults that correspond to R and R′ in the Riedel shear model and that are related to master faults (M) of north-northeast-strike. Veins of 315° strike can be interpreted as nearly pure extensional fractures (T). Variations in vein strike predict an induced sinistral shear component for strike directions of >315°, whereas strike directions of <315° are predicted with an induced dextral strike–slip movement. The components of the structural model appear to be present on a regional scale and are not restricted to the San José district.  相似文献   
86.
Microstructural and magnetic investigations (anisotropy of magnetic susceptibility, AMS) on sections across basement–cover interfaces (BCI) revealed a complex evolution in the crystalline basement rocks beneath and in the basal units of the Caledonian fold-and-thrust belt: (1) Pre-Caledonian mylonitic fabrics in basement granite relate to steep shear zones. (2) Palaeoweathering formed smectite and illite at the expense of feldspar and mica. Secondary Fe-bearing clay minerals and the intensity of the chemical weathering control the bulk susceptibility. Changing susceptibility and AMS relate to a (time) sequence from primary magnetite to secondary paramagnetic clay to pyrite and ferrimagnetic pyrrhotite. (3) Burial compaction with BCI-parallel fabrics. (4) Caledonian cleavage, overprinted by décollement zones with S–C–C′ fabrics. Décollement cataclasis overprinted pre-existing magnetic fabrics and produced horizontal magnetic lineations and subhorizontal foliations defined by the S–C–C′ fabrics. Clay mineral enrichment, together with subsequent, BCI-parallel compaction fabrics, decreased the shear strength in the basement rocks beneath the BCI. Detachments initiated at such low-strength zones and produced allochthonous units with their footwall within crystalline basement rocks, an observation of general importance for orogenic fold-and-thrust belts.  相似文献   
87.
88.
Potential pathways in the subsurface may allow upwardly migrating gaseous CO2 from deep geological storage formations to be released into near surface aquifers. Consequently, the availability of adequate methods for monitoring potential CO2 releases in both deep geological formations and the shallow subsurface is a prerequisite for the deployment of Carbon Capture and Storage technology. Geoelectrical surveys are carried out for monitoring a small-scale and temporally limited CO2 injection experiment in a pristine shallow aquifer system. Additionally, the feasibility of multiphase modeling was tested in order to describe both complex non-linear multiphase flow processes and the electrical behavior of partially saturated heterogeneous porous media. The suitability of geoelectrical methods for monitoring injected CO2 and geochemically altered groundwater was proven. At the test site, geoelectrical measurements reveal significant variations in electrical conductivity in the order of 15?C30?%. However, site-specific conditions (e.g., geological settings, groundwater composition) significantly influence variations in subsurface electrical conductivity and consequently, the feasibility of geoelectrical monitoring. The monitoring results provided initial information concerning gaseous CO2 migration and accumulation processes. Geoelectrical monitoring, in combination with multiphase modeling, was identified as a useful tool for understanding gas phase migration and mass transfer processes that occur due to CO2 intrusions in shallow aquifer systems.  相似文献   
89.
We present an organic geochemical study of surface sediments of Lake Sarbsko, a shallow coastal lake on the middle Polish Baltic coast. The aim was to provide evidence concerning the origin of the organic matter (OM) and its compositional diversity in surface deposits of this very productive, highly dynamic water body. The content and composition of the OM in the bottom sediments were investigated at 11 sampling stations throughout the lake basin. OM sources were assigned on the basis of bulk indicators [total organic carbon (TOC), total nitrogen (TN), δ13CTOC and δ15N and extractable OM yield], biomarker composition of extractable OM and compound-specific C isotope signatures. The source characterization of autochthonous compounds was verified via phytoplankton analysis. The distribution of gaseous hydrocarbons in the sediments, as well as temporal changes in lake water pH, the concentration of DIC (dissolved inorganic carbon) and δ13CDIC were used to trace OM decomposition.The sedimentary OM is composed mainly of well preserved phytoplankton compounds and shows minor spatial variability in composition. However, the presence of CH4 and CO2 in the bottom deposits provides evidence for microbial degradation of sedimentary OM. The transformation of organic compounds in surface, bottom and pore waters via oxidative processes influences carbonate equilibrium in the lake and seasonally favours precipitation or dissolution of CaCO3.The data enhance our understanding of the relationships between the composition of sedimentary OM and environmental conditions within coastal ecosystems and shed light on the reliability of OM proxies for environmental reconstruction of coastal lakes.  相似文献   
90.
The Alpine Foreland Basin is a minor oil and moderate gas province in central Europe. In the Austrian part of the Alpine Foreland Basin, oil and minor thermal gas are thought to be predominantly sourced from Lower Oligocene horizons (Schöneck and Eggerding formations). The source rocks are immature where the oil fields are located and enter the oil window at ca. 4 km depth beneath the Alpine nappes indicating long-distance lateral migration. Most important reservoirs are Upper Cretaceous and Eocene basal sandstones.Stable carbon isotope and biomarker ratios of oils from different reservoirs indicate compositional trends in W-E direction which reflect differences in source, depositional environment (facies), and maturity of potential source rocks. Thermal maturity parameters from oils of different fields are only in the western part consistent with northward displacement of immature oils by subsequently generated oils. In the eastern part of the basin different migration pathways must be assumed. The trend in S/(S + R) isomerisation of ααα-C29 steranes versus the αββ (20R)/ααα (20R) C29 steranes ratio from oil samples can be explained by differences in thermal maturation without involving long-distance migration. The results argue for hydrocarbon migration through highly permeable carrier beds or open faults rather than relatively short migration distances from the source. The lateral distance of oil fields to the position of mature source rocks beneath the Alpine nappes in the south suggests minimum migration distances between less than 20 km and more than 50 km.Biomarker compositions of the oils suggest Oligocene shaly to marly successions (i.e. Schoeneck, Dynow, and Eggerding formations) as potential source rocks, taking into account their immature character. Best matches are obtained between the oils and units a/b (marly shale) and c (black shale) of the “normal” Schöneck Formation, as well as with the so-called “Oberhofen Facies”. Results from open system pyrolysis-gas chromatography of potential source rocks indicate slightly higher sulphur content of the resulting pyrolysate from unit b. The enhanced dibenzothiophene/phenanthrene ratios of oils from the western part of the basin would be consistent with a higher contribution of unit b to hydrocarbon expulsion in this area. Differences in the relative contribution of sedimentary units to oil generation are inherited from thickness variations of respective units in the overthrusted sediments. The observed trend towards lighter δ13C values of hydrocarbon fractions from oil fields in a W-E direction are consistent with lower δ13C values of organic matter in unit c.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号