首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1184篇
  免费   72篇
  国内免费   14篇
测绘学   49篇
大气科学   105篇
地球物理   247篇
地质学   424篇
海洋学   104篇
天文学   236篇
综合类   3篇
自然地理   102篇
  2022年   3篇
  2021年   17篇
  2020年   22篇
  2019年   31篇
  2018年   45篇
  2017年   40篇
  2016年   49篇
  2015年   40篇
  2014年   32篇
  2013年   89篇
  2012年   56篇
  2011年   63篇
  2010年   48篇
  2009年   72篇
  2008年   64篇
  2007年   57篇
  2006年   61篇
  2005年   37篇
  2004年   54篇
  2003年   58篇
  2002年   35篇
  2001年   22篇
  2000年   31篇
  1999年   14篇
  1998年   12篇
  1997年   17篇
  1996年   13篇
  1995年   12篇
  1994年   12篇
  1993年   15篇
  1992年   10篇
  1991年   5篇
  1990年   12篇
  1989年   13篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   8篇
  1984年   8篇
  1983年   10篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   10篇
  1978年   8篇
  1976年   6篇
  1975年   6篇
  1973年   6篇
  1972年   3篇
  1971年   5篇
排序方式: 共有1270条查询结果,搜索用时 15 毫秒
191.
Submarine lava flow morphology is commonly used to estimate relative flow velocity, but the effects of crystallinity and viscosity are rarely considered. We use digital petrography and quantitative textural analysis techniques to determine the crystallinity of submarine basaltic lava flows, using a set of samples from previously mapped lava flow fields at the hotspot-affected Galápagos Spreading Center. Crystallinity measurements were incorporated into predictive models of suspension rheology to characterize lava flow consistency and rheology. Petrologic data were integrated to estimate bulk lava viscosity. We compared the crystallinity and viscosity of each sample with its flow morphology to determine their respective roles in submarine lava emplacement dynamics. We find no correlation between crystallinity, bulk viscosity, and lava morphology, implying that flow advance rate is the primary control on submarine lava morphology. However, we show systematic variations in crystal size and shape distribution among pillows, lobates, and sheets, suggesting that these parameters are important indicators of eruption processes. Finally, we compared the characteristics of lavas from two different sampling sites with contrasting long-term magma supply rates. Differences between lavas from each study site illustrate the significant effect of magma supply on the physical properties of the oceanic upper crust.  相似文献   
192.
The last decade or so has seen the development of refined performance-based earthquake engineering(PBEE) approaches that now provide a framework for estimation of a range of important decision variables,such as repair costs,repair time and number of casualties. This paper reviews current tools for PBEE,including the PACT software,and examines the possibility of extending the innovative displacement-based assessment approach as a simplified structural analysis option for performance assessment. Details of the displacement-based s+eismic assessment method are reviewed and a simple means of quickly assessing multiple hazard levels is proposed. Furthermore,proposals for a simple definition of collapse fragility and relations between equivalent single-degree-of-freedom characteristics and multi-degree-of-freedom story drift and floor acceleration demands are discussed,highlighting needs for future research. To illustrate the potential of the methodology,performance measures obtained from the simplified method are compared with those computed using the results of incremental dynamic analyses within the PEER performance-based earthquake engineering framework,applied to a benchmark building. The comparison illustrates that the simplified method could be a very effective conceptual seismic design tool. The advantages and disadvantages of the simplified approach are discussed and potential implications of advanced seismic performance assessments for conceptual seismic design are highlighted through examination of different case study scenarios including different structural configurations.  相似文献   
193.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   
194.
Coastal inundation associated with extreme sea levels is the main factor which leads to the loss of life and property whenever a severe tropical cyclonic storm hits the Indian coasts. The Andhra and Orissa coasts are most vulnerable for coastal inundation due to extreme rise in sea levels associated with tropical cyclones. Loss of life may be minimized if extreme sea levels and associated coastal flooding is predicted well in advance. Keeping this in view, location specific coastal inundation models are developed and applied for the Andhra and Orissa coasts of India. Several numerical experiments are carried out using the data of past severe cyclones that struck these regions. The simulated inland inundation distances are found to be in general agreement with the reported flooding.  相似文献   
195.
The circulation and salinity distribution in the Hooghly Estuary have been studied by developing a two‐dimensional depth‐averaged numerical model for the lower estuary, where the flow is vertically well mixed. This has been coupled with a one‐dimensional model for the upper estuary, where the flow is assumed to be unidirectional and well mixed over the depth and breadth. The Hooghly River receives high freshwater discharge during the monsoon season (June to September), which has significant effect on the salinity distribution in the estuary. The model‐simulated currents, elevations, and salinities are in good agreement with observations during the dry season. However, during the wet season the computed salinities seem to deviate slightly from the observed values.  相似文献   
196.
Marine debris, particularly debris that is composed of lost or abandoned fishing gear, is recognized as a serious threat to marine life, vessels, and coral reefs. The goal of the GhostNet project is the detection of derelict nets at sea through the use of weather and ocean models, drifting buoys and satellite imagery to locate convergent areas where nets are likely to collect, followed by airborne surveys with trained observers and remote sensing instruments to spot individual derelict nets. These components of GhostNet were first tested together in the field during a 14-day marine debris survey of the Gulf of Alaska in July and August 2003. Model, buoy, and satellite data were used in flight planning. A manned aircraft survey with visible and IR cameras and a LIDAR instrument located debris in the targeted locations, including 102 individual pieces of debris of anthropogenic or terrestrial origin.  相似文献   
197.
Determination of the rate and total amount of limestone pavement surface lowering is a critical issue in developing models of regional landscape change in limestone terrain. Erratic‐capped pedestals have frequently been used for this purpose but problems concerning definition and measurement of pedestal height, and the absence of a secure timeframe for erratic emplacement, have resulted in conflicting interpretations. We have used cosmogenic (36Cl) to establish the emplacement age of erratic boulders and the total amount of pavement surface lowering at sites in northwest England. Since erratic emplacement at 17.9 ka the limestone pavement has been lowered by 22–45 cm (average: 33 ± 10 cm), assuming lowering was continuous. Although indicating some spatial heterogeneity, the results contrast with earlier reported values based on the measurement of pedestal heights and inferred age for deglaciation. We consider that changes in climate and the character and duration of regolith covers to have been important influences in promoting surface lowering. It is argued that nivation (chemical and mechanical snow‐related processes) associated with several cool/cold periods is likely to have played an important role in surface lowering. Complicating factors associated with surface lowering (thickness and longevity of snow and regolith covers) are identified but as yet cannot be quantified. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
198.
This paper proposes a dynamic modeling methodology based on a dynamic neuro-fuzzy local modeling system (DNFLMS) with a nonlinear feature extraction technique for an online dynamic modeling task. Prior to model building, a nonlinear feature extraction technique called the Gamma test (GT) is proposed to compute the lowest mean squared error (MSE) that can be achieved and the quantity of data required to obtain a reliable model. Two different DNFLMS modes are developed: (1) an online one-pass clustering and the extended Kalman filtering algorithm (mode 1); and (2) hybrid learning algorithm (mode 2) of extended Kalman filtering algorithm with a back-propagation algorithm trained to the estimated MSE and number of data points determined by a nonlinear feature extraction technique. The proposed modeling methodology is applied to develop an online dynamic prediction system of river temperature to waste cooling water discharge at 1?km downstream from a thermal power station from real-time to time ahead (2?h) sequentially at the new arrival of each item of river, hydrological, meteorological, power station operational data. It is demonstrated that the DNFLMS modes 1 and 2 shows a better prediction performance and less computation time required, compared to a well-known adaptive neural-fuzzy inference system (ANFIS) and a multi-layer perceptron (MLP) trained with the back propagation (BP) learning algorithm, due to local generalization approach and one-pass learning algorithm implemented in the DNFLMS. It is shown that the DNFLMS mode 1 is that it can be used for an online modeling task without a large amount of training set required by the off-line learning algorithm of MLP-BP and ANFIS. The integration of the DNFLMS mode 2 with a nonlinear feature extraction technique shows that it can improve model generalization capability and reduce model development time by eliminating iterative procedures of model construction using a stopping criterion in training and the quantity of required available data in training given by the GT.  相似文献   
199.
Developing a mathematical model for predicting fecal coliform bacteria concentration is very important because it can provide a basis for water quality management decisions that can minimize microbial pollution risk to the public. This paper introduces a hybrid modeling methodology which is a combined use of a neural network-based pattern analysis and an evolutionary process model induction system. The neural network-based pattern analysis technique is applied to extract knowledge on inter-relationships between fecal coliform concentrations and other measurable variables in a sewer system. Based on the result of neural network-based pattern analysis, an evolutionary process model induction system is used to derive mathematical inference models that can predict fecal coliform bacteria concentration from easily measurable variables instead of directly measuring fecal coliform bacteria concentration in a sewer system. The neural network-based pattern analysis extracts that temperature and ammonia concentration are the most important driving forces leading to an increase in fecal coliform bacteria concentration in the sewer system at Paraparaumu City, New Zealand. Fecal coliform bacteria concentration is also positively correlated with dissolved phosphorus and inversely with flow rate. The multivariate inference models that are able to predict fecal coliform bacteria concentration are successfully derived as functions of flow rate, temperature, ammonia, and dissolved phosphorus in the form of understandable mathematical formulae using the evolutionary process model induction system, even if a priori mathematical knowledge of the dynamic nature of fecal coliform bacteria is poor. The multivariate inference models evolved by the evolutionary process model induction system produce a slightly better performance than the multi-layer perceptron neural network model.  相似文献   
200.
It is very important for converting the seismic data from the time domain to the depth domain. Here we discuss the approaches of inverse modeling of travel times for determination of the P-wave velocity (Vp). The migration section of the single channel seismic data is used to define the model horizons and help to control their geometry. Wide angle hydrophone data of OBS are used to determine P-wave travel times. The picked travel times from various shots are inverted for P-wave interval velocities using RayInvr, which calculated theoretical travel times via ray tracing. Damped least squares optimization is performed to fine tune the fits between observed and calculated travel times. In the end, the Vp curve is achieved and the results are compared with that derived from the conventional hyperbolic curve velocity analysis method, the shape of the two curves are similar, and the velocity increases in the layer where gas hydrates are present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号