首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   22篇
测绘学   33篇
大气科学   34篇
地球物理   94篇
地质学   69篇
海洋学   11篇
天文学   44篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   14篇
  2019年   9篇
  2018年   16篇
  2017年   16篇
  2016年   21篇
  2015年   15篇
  2014年   17篇
  2013年   36篇
  2012年   18篇
  2011年   21篇
  2010年   12篇
  2009年   16篇
  2008年   16篇
  2007年   11篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   2篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
排序方式: 共有294条查询结果,搜索用时 218 毫秒
71.
A Comparison of Global and Regional GRACE Models for Land Hydrology   总被引:1,自引:0,他引:1  
When using GRACE as a tool for hydrology, many different gravity field model products are now available to the end user. The traditional spherical harmonics solutions produced from GRACE are typically obtained through an optimization of the gravity field data at the global scale, and are generated by a number of processing centers around the world. Alternatives to this global approach include so-called regional techniques, for which many variants exist, but whose common trait is that they only use the gravity data collected over the area of interest to generate the solution. To determine whether these regional solutions hold any advantage over the global techniques in terms of overall accuracy, a range of comparisons were made using some of the more widely used regional and global methods currently available. The regional techniques tested made use of either spherical radial basis functions or single layer densities (i.e., mascons), with the global solutions having been obtained from the various major processing centers. The solutions were evaluated using a range of computed statistics over a selection of major river basins, which were globally distributed and ranged in size from 1 to 6 million km2. For one of the basins tested, the Zambezi, additional validation tests were conducted through comparisons against a custom designed regional hydrology model of the region. We could not prove that current regional models perform better than global ones. Monthly mean water storage variations agree at the level of 0.02 m equivalent water height. The differences in terms of monthly mean water storage variations between regional and global solutions are comparable with the differences among only global or regional solutions. Typically they reach values of 0.02 m equivalent water heights, which seems to be the level of accuracy of current GRACE solutions for river basins above 1 million km2. The amplitudes of the seasonal mass variations agree at the sub-centimetre level. Evident from all of the comparisons shown is the importance that the choice of regularization, or spatial filtering, can have on the solution quality. This was found to be true for global as well as regional techniques.  相似文献   
72.
Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772, only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano.  相似文献   
73.
74.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
75.
Beobide-Arsuaga  Goratz  Bayr  Tobias  Reintges  Annika  Latif  Mojib 《Climate Dynamics》2021,56(11):3875-3888

There is a long-standing debate on how the El Niño/Southern Oscillation (ENSO) amplitude may change during the twenty-first century in response to global warming. Here we identify the sources of uncertainty in the ENSO amplitude projections in models participating in the Coupled Model Intercomparison Phase 5 (CMIP5) and Phase 6 (CMIP6), and quantify scenario uncertainty, model uncertainty and uncertainty due to internal variability. The model projections exhibit a large spread, ranging from increasing standard deviation of up to 0.6 °C to diminishing standard deviation of up to − 0.4 °C by the end of the twenty-first century. The ensemble-mean ENSO amplitude change is close to zero. Internal variability is the main contributor to the uncertainty during the first three decades; model uncertainty dominates thereafter, while scenario uncertainty is relatively small throughout the twenty-first century. The total uncertainty increases from CMIP5 to CMIP6: while model uncertainty is reduced, scenario uncertainty is considerably increased. The models with “realistic” ENSO dynamics have been analyzed separately and categorized into models with too small, moderate and too large ENSO amplitude in comparison to instrumental observations. The smallest uncertainties are observed in the sub-ensemble exhibiting realistic ENSO dynamics and moderate ENSO amplitude. However, the global warming signal in ENSO-amplitude change is undetectable in all sub-ensembles. The zonal wind-SST feedback is identified as an important factor determining ENSO amplitude change: global warming signal in ENSO amplitude and zonal wind-SST feedback strength are highly correlated across the CMIP5 and CMIP6 models.

  相似文献   
76.
77.
Passive treatment systems are widely used for remediation of acid mine drainage (AMD), but existing designs are prone to clogging or loss of reactivity due to Al- and Fe-precipitates when treating water with high Al and heavy metal concentrations. Dispersed alkaline substrate (DAS) mixed from a fine-grained alkaline reagent (e.g. calcite sand) and a coarse inert matrix (e.g. wood chips) had shown high reactivity and good hydraulic properties in previous laboratory column tests. In the present study, DAS was tested at pilot field scale in the Iberian Pyrite Belt (SW Spain) on metal mine drainage with pH near 3.3, net acidity 1400–1650 mg/L as CaCO3, and mean concentrations of 317 mg/L Fe (95% Fe(II)), 311 mg/L Zn, 74 mg/L Al, 20 mg/L Mn, and 1.5–0.1 mg/L Cu, Co, Ni, Cd, As and Pb. The DAS-tank removed an average of 870 mg/L net acidity as CaCO3 (56% of inflow), 25% Fe, 93% Al, 5% Zn, 95% Cu, 99% As, 98% Pb, and 14% Cd, but no Mn, Ni or Co. Average gross drain pipe alkalinity was 181 mg/L as CaCO3, which increased total Fe removal to 153 mg/L (48%) in subsequent sedimentation ponds. Unfortunately, the tank suffered clogging problems due to the formation of a hardpan of Al-rich precipitates. DAS lifetime could probably be increased by lowering Al-loads.  相似文献   
78.
79.
The spatio‐temporal distribution of snow in a catchment during ablation reflects changes in the total amount of snow water equivalent and is thus a key parameter for the estimation of melt water run‐off. This study explores possible rules behind the spatial variability of snow depth during the ablation season in a small Alpine catchment with complex topography. The snow depth observations are based on more than 160 000 terrestrial laser scanner data points with a spatial resolution of 1 m, which were obtained from 11 scanning campaigns of two consecutive ablation seasons. The analysis suggests that for estimating cumulative snow melt dynamics from the catchment investigated, assessing the initial snow distribution prior to the melt season is more important than addressing spatial differences in the melt behaviour. Snow volume and snow‐covered area could be predicted well using a conceptual melt model assuming spatially uniform melt rates. However, accurate results were only obtained if the model was initialized with a pre‐melt snow distribution that reflected measured mean and standard deviation. Using stratified melt rates on the other hand did not improve the model results. At least for sites with similar meteorological and topographical conditions, the model approach presented here comprises an efficient way to estimate snow depletion dynamics, especially if persistent snow accumulation pattern between years facilitate the characterization of the initial snow distribution prior to the melt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
80.
Ground‐penetrating radar (GPR) has become a promising technique in the field of snow hydrological research. It is commonly used to measure snow depth, density, and water equivalent over large distances or along gridded snow courses. Having built and tested a mobile lightweight set‐up, we demonstrate that GPR is capable of accurately measuring snow ablation rates in complex alpine terrain. Our set‐up was optimized for efficient measurements and consisted of a multioffset radar with four pairs of antennas mounted to a plastic sled, which was small enough to permit safe and convenient operations. Repeated measurements at intervals of 2 to 7 days were taken during the 2014/2015 winter season along 10 profiles of 50 to 200 m length within two valleys located in the eastern Swiss Alps. Resulting GPR‐based data of snow depth, density, and water equivalent, as well as their respective change over time, were in good agreement with concurrent manual measurements, in particular if accurate alignment between repeated overpasses could be achieved. Corresponding root‐mean‐square error (RMSE) values amounted to 4.2 cm for snow depth, 17 mm for snow water equivalent, and 22 kg/m3 for snow density, with similar RMSE values for corresponding differential data. With this performance, the presented radar set‐up has the potential to provide exciting new and extensive datasets to validate snowmelt models or to complement lidar‐based snow surveys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号