首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   7篇
  国内免费   15篇
测绘学   1篇
大气科学   96篇
地质学   1篇
综合类   4篇
自然地理   1篇
  2022年   3篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   9篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   10篇
  2002年   4篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有103条查询结果,搜索用时 484 毫秒
11.
“9.18”川西北暴雨过程的数值预报与试验   总被引:6,自引:1,他引:6  
何光碧  肖玉华  顾清源 《气象》2002,28(8):19-23
利用成都区域中心ETA坐标模式,对2001年9月18-21日发生在四川盆地西北部的暴雨过程作数值预报试验,显示出对大暴雨过程的预报能力。模式预报对此降水过程雨区的移动、稳定、减弱趋势有较好的反应,但降水强度预报偏弱,且落区有偏差。数值试验揭示了降水前期对流层中、低层的西南、东南气流对降水的重要作用,而北方冷空气的强弱对此影响不明显。  相似文献   
12.
阶梯形山脉模式地形η坐标系嵌套细网格模式的试验研究和准业务化系统的建立膝家谟,何光碧,肖玉华,仇理(四川省气象局610072)关键词:阶梯形山脉,η坐标系,细网格模式,准业务化系统1引言本项研究成果是国家“八五”科技攻关85—906项目中“9坐标系和...  相似文献   
13.
高原低涡移出高原的观测事实分析   总被引:27,自引:0,他引:27  
郁淑华  高文良 《气象学报》2006,64(3):392-399
应用天气学、统计学原理,结合TRMM资料,分析了1998—2004年5—9月移出高原的低涡的活动特征。结果指出:6—8月是高原低涡移出高原影响中国东部天气的主要时段,它与高原低涡在高原上的活动特征及西南低涡移出高原特征均不同;移出高原的高原低涡的涡源主要在曲麻莱附近、德格附近,这与高原上产生低涡的涡源不同;移出高原的高原低涡的移动路径多数是随低槽的活动而向东、向东南移动,这与高原低涡在高原上多数是沿切变线移向东北不同,高原低涡移出高原后,不仅影响中国的范围广,还可能影响到朝鲜半岛、日本;高原低涡移出高原后涡的强度、性质会有变化,在高原以东活动时间长(≥36 h)的高原低涡,移出高原前多数为暖性低涡,移出高原后多数为斜压性低涡,低涡加强、多数可产生暴雨、大暴雨;高原低涡移出高原后移到海洋上,往往因下垫面不同而变化,出海后都有降水加强、多数位势高度下降的现象;移出高原后的高原低涡因东面海上热带气旋活动而少动,与其南面热带气旋活动相向而行,因季风低压少动而少动的现象。  相似文献   
14.
肖玉华  康岚  徐琳娜  屠妮妮  卢萍  袁本荷 《气象》2013,39(10):1257-1264
本文以探空站和自动站实测资料为检验参考,通过主客观检验GRAPES和WRF模式在西南地区的初始分析场和预报场,一定程度揭示出模式在西南地区的初值质量、动力框架性能和降水参数化效果。GRAPES在西南地区的位势高度、风速、风向初值质量都不同程度好于WRF,但进入预报阶段,GRAPES位势高度、温度均方根误差以比WRF更高的斜率随时效增长,GRAPES对西南地区的500 hPa高度场预报呈现系统性偏低,而WRF对西南地区高度预报的正误差概率比较高;分类天气过程检验表明,GRAPES对低涡、切变过程的初始分析质量好于WRF,但进入预报阶段,WRF对低槽、低涡和切变三类天气过程的低值系统预报正确率都高于GRAPES,这一定程度反映出WRF的模式性能好于GRAPES;分类天气过程降水预报检验表明,低涡过程降水预报难于低槽过程。GRAPES对低涡过程的降水预报能力较低,WRF预报能力最低的是切变过程。这与模式对分类天气过程中低值系统预报能力一致,这一定程度表明两个模式的降水参数化效果水平相当。  相似文献   
15.
青藏高原低涡活动对降水影响的统计分析   总被引:6,自引:0,他引:6  
郁淑华  高文良  彭骏 《高原气象》2012,31(3):592-604
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。  相似文献   
16.
南支气流对高原低涡移出高原影响的数值试验   总被引:2,自引:0,他引:2  
本文在对2000年以来移出青藏高原后活动时间长的高原低涡活动过程,进行对流层中层南支气流对高原低涡移出高原的影响的观测事实分析基础上,通过对2001年6月1~5日索县低涡移出高原活动的数值模拟和试验分析,得出了在高原低涡以南的南支气流减弱或者是没有南风或者是没有南风脉动的影响,会使低涡移出高原的速度减慢,移出高原12小时后减弱消失。低涡以南的南支气流起到了向低涡区输送水汽通量、正涡度平流的作用,提供利于低涡活动持续的条件。从而丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。  相似文献   
17.
本文基于区域暴雨数值预报模式AREM,针对2007年7月发生在四川地区的多次强降水过程进行数值试验,检验了NCEP和站点资料(STN)初始分析场资料预报结果,发现由于台站资料稀少,NCEP资料在四川地区的评分较高。讨论了四川盆地降水对初值的高度敏感性,揭示了四川盆地降水对初值中各个物理量场的不同敏感性,其中,降水对初值中湿度场的响应最为显著。初值不仅决定着降水的范围和强度,还对降水的发生时间产生明显影响。  相似文献   
18.
1998年夏季两例青藏高原低涡结构特征的比较   总被引:5,自引:2,他引:3       下载免费PDF全文
郁淑华  高文良 《高原气象》2010,29(6):1357-1368
利用1998年Micaps历史天气图、1998年第二次青藏高原科学试验资料和NCEP/NCAR 1°×1°分辨率的再分析资料,对该年夏季两例移出与未移出高原的低涡活动过程及特征进行了对比分析,结果表明,移出与未移出高原低涡的低涡结构特征差异显著:(1)移出高原低涡,低涡环流呈圆形,厚度有3000 m左右,降水区呈环状分布;未移出高原低涡,低涡环流呈椭圆形,厚度为1500 m左右,降水区在低涡的南、西南方。(2)移出高原低涡,低涡区内绝大部分为上升运动区,并且强度在加强、区域扩大;未移出低涡,涡区内上升运动在减弱,上升运动区在缩小。(3)移出高原低涡,涡区内斜压性强,比未移出的大近一倍。(4)移出高原低涡,涡区内500 hPa有高位涡沿东北方向向上输送位涡平流,未移出高原低涡的有次高位涡沿东南方向向下输送位涡平流。(5)移出高原低涡是下层‘正涡度、暖区’、上层‘负涡度、冷区’;未移出高原低涡是下层‘正涡度、冷区’、中层‘负涡度、弱暖区’、上层‘正涡度、冷区’。  相似文献   
19.
青藏高原低涡活动的统计研究   总被引:14,自引:3,他引:11       下载免费PDF全文
利用1980-2004年5~9月逐日08时、20时(北京时,下同)两个时次的500 hPa天气图资料,统计分析了夏季青藏高原低涡(简称高原低涡)的活动特征.结果表明:夏季高原低涡的发生频次具有明显的年代际、年际和季节内变化特征,20世纪90年代以后低涡出现频次较之80年代有下降趋势,7月份是夏季高原低涡的活跃期;青藏高原上产生低涡的四个源地分别为:申扎-改则之间、那曲东北部地区、德格东北部和松潘附近;移出青藏高原的高原低涡在青藏高原上主要有四个涡源:那曲东北部、曲麻莱地区、德格附近和玛沁附近,也存在季节内变化,与青藏高原上产生低涡的涡源不同;部分高原低涡形成后,能在高原上生存36 h以上并发展东移,移动路径主要有东北、东南和向东三条,其中向东北移动的低涡数量最多;而低涡移出青藏高原后的路径与在高原上的移动路径并不相同,移出高原后的低涡多数是向东移动的,其次才向东北、东南移动;高原低涡移出高原时主要有两条路径:一条为东北路径,主要移向河西、宁夏和黄土高原一带;另一条是东南路径,主要移向四川盆地附近,其中,移向黄土高原的低涡最多;移出低涡也表现出一定的年际变化和季节内变化特征;高原低涡移出青藏高原后,多数在12 h内减弱消亡,有些可持续60 h,极少数能存活100 h以上,最长可达192 h,不仅影响我国东部广大地区的降水,甚至可能影响朝鲜半岛和日本;高原低涡在青藏高原上初生时,暖性涡比斜压涡多近两倍,而移出青藏高原后12 h内的低涡性质却发生了很大改变,以斜压涡居多;与60、70年代相比,80年代中期以后高原低涡的发生源地、移动路径和性质等特征都有所改变.  相似文献   
20.
利用NCEP/NCAR 1°×1°再分析资料、历史天气图、青藏高原低涡切变线年鉴,分析了1998-2013年持续高原涡诱发西南涡结伴而行的观测事实,并对一例持续高原涡诱发西南涡的长时间伴行过程进行天气、诊断分析。结果表明,在持续高原涡与西南涡共同活动过程中,两涡移向较一致的多数是由持续高原涡诱发的西南涡过程造成的,它们的移向多为向东或东北移;持续高原涡诱发的西南涡是在500h Pa上东亚环流经向度减弱,在处在切变流场中的高原涡的环流东南部-西南气流下空生成的;伴行的西南涡受高原涡活动影响大,高原涡加强会影响西南涡加强;高原涡对西南涡的诱发作用是由高原涡移出高原,其伴随的正涡度向下伸,与对流层低层盆地内气流的气旋性弯曲所伴的正涡度叠合,使盆地内气旋性涡度加强而诱发西南涡生成的,西南涡区上空正涡度平流随高度增加的强迫上升作用是高原涡诱发西南涡的又一重要因素;高原涡与西南涡伴行是与高原涡区、西南涡区的正涡度平流及高原涡区、盆地涡区上空正涡度平流随高度增加的强迫上升作用密切相关的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号