首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   5篇
  国内免费   1篇
测绘学   2篇
大气科学   12篇
地球物理   16篇
地质学   18篇
海洋学   2篇
天文学   6篇
自然地理   1篇
  2020年   2篇
  2019年   3篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   7篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2002年   2篇
  2001年   2篇
  1995年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
41.
Late Cenozoic geodynamic evolution of eastern Indonesia   总被引:2,自引:0,他引:2  
This paper presents an internally and globally consistent model of plate evolution in eastern Indonesia from Middle Miocene to Present time. It is centered on the Banda Sea region located in the triple junction area between the Pacific–Philippine, Australia and South–East Asia plates. The geological and geophysical data available from Indonesia were until recently insufficient to define a unique plate tectonic model. In this paper, the new data taken into account clearly restrict the possible interpretations. Owing to a great number of geological, geophysical and geochemical studies, the major plate boundaries (the Sunda–Banda subduction zone to the south, the Tarera–Aiduna Fault zone and the Seram Thrust to the east, and the Sorong Fault zone and Molucca Sea collision zone to the north) are now clearly identified. The age of the major tectonic structures is also better known. Geodetic measurements well constrain the Present time plate kinematics. We also consider the deformation history within eastern Indonesia, where numerous short-lived microplates and their related microcontinents successively accreted to the Asiatic margin. Moreover, magnetic anomalies identification of the North and South Banda Sea basins allows a precise kinematic reconstruction of the back-arc opening. We used the Plates software to test the coherency of our model, presented as a series of 4 plate reconstruction maps from 13 Ma to the present. Finally, the origin of oceanic domains restored by our reconstruction is discussed.  相似文献   
42.
The degree of general applicability across Europe currently achieved with several forest succession models is assessed, data needs and steps for further model development are identified and the role physiology based models can play in this process is evaluated. To this end, six forest succession models (DISCFORM, ForClim, FORSKA-M, GUESS, PICUS v1.2, SIERRA) are applied to simulate stand structure and species composition at 5 European pristine forest sites in different climatic regions. The models are initialized with site-specific soil information and driven with climate data from nearby weather stations. Predicted species composition and stand structure are compared to inventory data. Similarity and dissimilarity in the model results under current climatic conditions as well as the predicted responses to six climate change scenarios are discussed. All models produce good results in the prediction of the right tree functional types. In about half the cases, the dominating species are predicted correctly under the current climate. Where deviations occur, they often represent a shift of the species spectrum towards more drought tolerant species. Results for climate change scenarios indicate temperature driven changes in the alpine elevational vegetation belts at humid sites and a high sensitivity of forest composition and biomass of boreal and temperate deciduous forests to changes in precipitation as mediated by summer drought. Restricted generality of the models is found insofar as models originally developed for alpine conditions clearly perform better at alpine sites than at boreal sites, and vice versa. We conclude that both the models and the input data need to be improved before the models can be used for a robust evaluation of forest dynamics under climate change scenarios across Europe. Recommendations for model improvements, further model testing and the use of physiology based succession models are made.  相似文献   
43.
In northern France, the weathering and oxidation of pyrite-containing coal mine spoils can lead to sulphate enrichment of the underlying chalk aquifer. Two sites have been studied: in a free water-table zone and in a confined-aquifer zone. Solid-fraction analyses have shown a release of carbon and sulphur from the waste dump surfaces. The groundwater isotopic analysis (notably 34S) showed the existence of two sulphate sources (mine spoils and gypsum contained in Cenozoic formations). This study also saw evidence of bacterial sulphate reduction in the confined zone as a result of the release of carbon from mine spoils. The effects of acid mine drainage were the presence of secondary minerals as small jarosite dots (cm) present at depth, gypsum or ferrihydrite present on the bottom of temporary ponds, and an increase in sulphate content of groundwaters sampled downstream of the waste dumps. This acid mine drainage is buffered during its infiltration into the chalk aquifer. This is evidenced by the increase in magnesium, calcium, bicarbonate or strontium, resulting of carbonate digestion downstream of the sites. No significant leaching of metals, even those associated with the sulphide fraction, was seen at the two studied sites.  相似文献   
44.
45.
Grasso  Florent  Le Hir  Pierre 《Ocean Dynamics》2019,69(1):83-100
Ocean Dynamics - Estuaries are subject to extensive morphological changes through human activities, such as deepening and narrowing via dredging and channelization. The estuary sediment load,...  相似文献   
46.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   
47.
Finite difference simulations of seismic wave propagation are performed in the Niigata area, Japan, for the 2007 Mw 6.6 Niigata-ken Chuetsu-Oki earthquake at low frequencies. We test three 3D structural models built independently in various studies. First aftershock simulations are carried out. The model based on 3D tomography yields correct body waves in the near field, but later phases are imperfectly reproduced due to the lack of shallow sediment layers; other models based on various 1D/2D profiles and geological interpretation provide good site responses but generate seismic phases that may be shifted from those actually observed. Next, for the mainshock simulations, we adopt two different finite source models that differ in the near-field ground motion, especially above the fault plane (but under the sea) and then along the coastline. Each model is found to be calibrated differently for the given stations. For engineering purposes, the variations observed in simulated ground motion are significant, but for seismological purposes, additional parameter calibrations would be possible for such a complex 3D case.  相似文献   
48.
A Cretaceous amber deposit has recently been discovered in a quarry of Charente-Maritime (southwestern France), at Cadeuil. This paper presents the sedimentary and palaeoenvironmental settings of the uppermost Albian-lowermost Cenomanian series including the amber deposit. A preliminary analysis of the amber samples reveals diverse fossil arthropods (a few mites and at least 20 insect families within 9 orders), as well as numerous micro-organisms, mainly algae and mycelia. A myceloid colony of bacteria, a flagellate algae and four especially well preserved insects are illustrated (Diptera Dolichopodidae, Diptera Chironomidae, Hymenoptera Parasitica, and Heteroptera Tingidae). The abundance of the limnic micro-organisms is discussed in terms of bloom events. Their relative scarcity in almost all the amber pieces containing fossil arthropods is attributed to differences in the origin of resin: production along trunk and branches for amber with arthropods; production by aquatic roots for amber rich in algae. The absence of pollen and spores in amber is attributed to differences in the respective periods of resin and palynomorph production, which may be related to a seasonal climate during the Albian-Cenomanian transition in Western Europe.  相似文献   
49.
Abstract

Recent studies have shown that northern vegetation has been growing in relation to a warming climate over the last four decades, especially across the transition zone between tundra and taiga. Shrub growth affects snow properties and the surface energy budget, which must be better studied to quantify shrub-snow-climate feedbacks. The objective of this research is to improve the characterization of the impact of shrubs on snow evolution, from its accumulation to its melt, using in-situ and satellite measurements. The research is presented for the Umiujaq site, Nunavik, representative of the low Arctic–Subarctic transition zone. Snow depth, measured along numerous transects spanning different land cover types is found to increase by a factor 2.5–3 between tundra and forest, while snow density decreases. This illustrates the trapping effect of vegetation well. Complementary, continuous snow depth measurements using weather stations from two sites (tundra with low shrubs and a small clearing with shrubs within the forest) show different site-dependent behaviors. Spatial analysis from high-resolution Pleiades images combined with Landsat (Normalized Difference Snow Index) and MODIS (Fractional Snow Cover) images suggest a slight delay in melt over open and dense forest areas compared to tundra and dense high shrubs.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号