首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   17篇
  国内免费   4篇
测绘学   30篇
大气科学   51篇
地球物理   165篇
地质学   283篇
海洋学   50篇
天文学   93篇
自然地理   28篇
  2019年   6篇
  2018年   8篇
  2017年   12篇
  2016年   20篇
  2015年   14篇
  2014年   16篇
  2013年   26篇
  2012年   13篇
  2011年   28篇
  2010年   32篇
  2009年   26篇
  2008年   22篇
  2007年   30篇
  2006年   26篇
  2005年   24篇
  2004年   20篇
  2003年   17篇
  2002年   30篇
  2001年   15篇
  2000年   7篇
  1999年   16篇
  1998年   7篇
  1997年   10篇
  1995年   9篇
  1994年   8篇
  1993年   10篇
  1991年   17篇
  1990年   8篇
  1989年   11篇
  1987年   8篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1981年   7篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   8篇
  1975年   7篇
  1974年   5篇
  1971年   5篇
  1966年   6篇
  1965年   6篇
  1964年   7篇
  1962年   7篇
  1960年   6篇
  1952年   5篇
  1949年   5篇
  1948年   5篇
排序方式: 共有700条查询结果,搜索用时 15 毫秒
21.
The Ediacaran Jibalah Group comprises volcano‐sedimentary successions that filled small fault‐bound basins along the NW–SE‐trending Najd fault system in the eastern Arabian‐Nubian Shield. Like several other Jibalah basins, the Antaq basin contains exquisitely preserved sedimentary structures and felsic tuffs, and hence is an excellent candidate for calibrating late Ediacaran Earth history. Shallow‐marine strata from the upper Jibalah Group (Muraykhah Formation) contain a diversity of load structures and intimately related textured organic (microbial) surfaces, along with a fragment of a structure closely resembling an Ediacaran frond fossil and a possible specimen of Aspidella. Interspersed carbonate beds through the Muraykhah Formation record a positive δ13C shift from ?6 to 0‰. U‐Pb zircon geochronology indicates a maximum depositional age of ~570 Ma for the upper Jibalah Group, consistent with previous age estimates. Although this age overlaps with that of the upper Huqf Supergroup in nearby Oman, these sequences were deposited in contrasting tectonic settings on opposite sides of the final suture of the East African Orogen.  相似文献   
22.
A possible asynchronicity of the spatial and temporal moisture availability on the Tibetan Plateau has been a controversial subject of discussion in recent years. Here we present the first attempt to systematically investigate possible spatial and temporal variations in moisture availability by examining two lakes, Tangra Yumco and Nam Co, on an east–west transect on the southern Tibetan Plateau using identical proxies for palaeoenvironmental reconstruction. In this study, an independent record from Tangra Yumco was analysed applying a multi‐proxy approach to reconstruct variations in moisture availability since the Lateglacial. Results were subsequently compared with previously published records from Nam Co and additional records from Tso Moriri (northwestern Himalaya) and Naleng Co (southeastern Tibetan Plateau). Our results show that Tangra Yumco was at least partially ice covered prior to 17.1 cal. ka BP. A temperature rise after 17.1 cal. ka BP probably resulted in thawing of the permafrost. At 16.0 cal. ka BP moisture availability increased, representing an initial monsoonal intensification. Warmer conditions between 13.0 and 12.4 cal. ka BP and cooler conditions between 12.4 cal. ka BP and the onset of the Holocene reflect the Bølling‐Allerød and Younger Dryas. At the onset of the Holocene moisture availability rapidly increased, with moisture highest prior to 8.5 cal. ka BP when temperatures were also highest. After 8.5 cal. ka BP the moisture availability gradually decreased and showed only minor amplitude variations. These findings are consistent with the records from large lakes like Nam Co, Tso Moriri, and Naleng Co, revealing a synchronous pattern of moisture availability on the southern Tibetan Plateau.  相似文献   
23.
24.
During German R/V Meteor M67/2 expedition to Campeche Knolls, southern Gulf of Mexico, a set of 2D high resolution seismic data was acquired to study the near-surface sediment structure and its relationship with hydrocarbon seepages in this salt province. The comprehensive survey covered 20 individual bathymetric highs or ridges and identified three principle structural types: Passive Type, Chaopopte Type, and Asymmetric Flap Type. The first type is the result of passive diapirism, whereas the latter two were initialized by a regional compressional event in the Miocene, but are later differently modified by salt tectonism. Chapopote Type structures appear as symmetrical domes, with uplifted coarse-grained Miocene sediments in their cores and rather thin syn-kinematic sediments covering the crests. Asymmetric Flap Type structures are also first folded as domes or ridges, but one flap later subsided together with salt evacuation, resulting in single uplifted monoclines. With the coarse-grained pre-kinematic sediments as reservoir units, both structural types can focus and accumulate hydrocarbons. The geometries of the structures suggest that hydrocarbons are accumulated in the center of the Chapopote Type structures and in the subsided flaps of the Asymmetric Flap Type structures. Hydrocarbon leakage from these thinly sealed reservoirs is regarded as the principle mechanism for the seepage in the study area, and accordingly the most seepage-prone positions are above these reservoirs. The seep locations suggested by analysis of sea-surface oil slick images of SAR satellite data are also examined in this study. These independently derived seep locations confirm the seepage-prone positions to be above the shallow buried reservoirs. This study suggest that the shallow sediment structures control the distribution of the hydrocarbon seeps of the north-western Campeche Knolls, although the hydrocarbons are sourced from the greater depth.  相似文献   
25.
Abstract

We examine the response of stably stratified airflow to a slab‐symmetric diabatic forcing associated with condensation in long‐lasting precipitation bands. The steady‐state linearized Boussinesq equations are used to model the diagnostic relationship between the vertical motion field, the heating source and the ambient flow. The basic‐state flow is assumed to be horizontally uniform and non‐rotating, but the static stability and wind vary in the vertical. Linear theory shows that the speed of the along‐band wind component is unimportant for slab‐symmetric heating since it cannot contribute towards the advection of buoyancy or vertical motion.

For typical atmospheric stratification and a moving heating source associated with a cloud band, the Taylor‐Goldstein equation is solved numerically. The numerical results show that the cross‐band wind shear tilts the updraft core and broadens it. While the magnitude of the shear is increased, the circulation becomes stronger. The details of the wind profile are also important in determining the intensity and structure of the circulation. When the wind profile indicates a convex bulge (i.e. the low‐level shear is weaker than the upper‐level shear), the circulation becomes slightly weaker in comparison with the linear wind profile. Conversely, the circulation becomes stronger when the wind profile has a concave shape. Increasing the concave bulge tends to enhance the circulation but not in a monotonic fashion. This non‐monotonic relation between the vertical motion and the parabolic wind profile is interpreted in terms of kinetic energy changes of parcels that interchange their altitudes.  相似文献   
26.
27.
28.
In this study we present a fresh isotopic data, as well as U–Pb ages from different REE-minerals in carbonatites and phoscorites of Guli massif using in situ LA-ICPMS technique. The analyses were conducted on apatites and perovskites from calcio-carbonatite and phoscorite units, as well as on pyrochlores and baddeleyites from the carbonatites. The 87Sr/86Sr ratios obtained from apatites and perovskites from the phoscorites are 0.70308–0.70314 and 0.70306–0.70313, respectively; and 0.70310–0.70325 and 0.70314–0.70327, for the pyrochlores and apatites from the carbonatites, respectively.Furthermore, the in situ laser ablation analyses of apatites and perovskites from the phoscorite yield εNd from 3.6 (±1) to 5.1 (±0.5) and from 3.8 (±0.5) to 4.9 (±0.5), respectively; εNd of apatites, perovskites and pyrochlores from carbonatite ranges from 3.2 (±0.7) to 4.9 (±0.9), 3.9 (±0.6) to 4.5 (±0.8) and 3.2 (±0.4) to 4.4 (±0.8), respectively. Laser ablation analyses of baddeleyites yielded an eHf(t)d of +8.5 (± 0.18); prior to this study Hf isotopic characteristic of Guli massif was not known. Our new in situ εNd, 87Sr/86Sr and eHf data on minerals in the Guli carbonatites imply a depleted source with a long time integrated high Lu/Hf, Sm/Nd, Sr/Rb ratios.In situ U–Pb age determination was performed on perovskites from the carbonatites and phoscorites and also on pyrochlores and baddeleyites from carbonatites. The co-existing pyrochlores, perovskites and baddeleyites in carbonatites yielded ages of 252.3 ± 1.9, 252.5 ± 1.5 and 250.8 ± 1.4 Ma, respectively. The perovskites from the phoscorites yielded an age of 253.8 ± 1.9 Ma. The obtained age for Guli carbonatites and phoscorites lies within the range of ages previously reported for the Siberian Flood Basalts and suggest essentially synchronous emplacement with the Permian-Triassic boundary.  相似文献   
29.
Compositional zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) deposit in western Germany (12.9 ka) are reported. These rocks represent the cooler outer portion and crystal-rich products of a cooling magma reservoir at upper crustal levels. Major and trace-element difference between cores and rims in sanidine crystals represent two generations of crystal growth separated by unmixing of a carbonate melt. Trace-element differences measured by LA–ICP–MS are in accordance with silicate–carbonate unmixing. Across the core–rim boundary, we extracted gray-scale profiles from multiple accumulations of back-scattered electron images. Gray scales directly represent K/Na ratios owing to low concentrations of Ba and Sr (<?30 ppm). Diffusion gradients are modeled to solve for temperature using known pre-eruptive U–Th zircon ages (0–20 ky) of each sample (Schmitt et al., J Petrol 51:1053–1085, 2010). Estimated temperatures range from 630 °C to 670 °C. For the exsolution boundaries, a diffusive homogenization model is constrained by the solvus temperature of ~ 712_725 °C and gives short time scales of only 15–50 days. Based on our results, we present a model for the temperature–time history of these rocks. The model also constrains the thermal variation across the cooling crystal-rich carapace of the magma reservoir over 20 ka and suggests a thermal reactivation of cumulates, the cooling carapace, and probably the entire system only a few years prior to the explosive eruption of the remaining molten core of the phonolitic magma reservoir.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号