首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   7篇
  国内免费   4篇
测绘学   9篇
大气科学   15篇
地球物理   43篇
地质学   63篇
海洋学   24篇
天文学   20篇
综合类   4篇
自然地理   23篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   12篇
  2017年   9篇
  2016年   6篇
  2015年   7篇
  2014年   10篇
  2013年   13篇
  2012年   5篇
  2011年   8篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   8篇
  2002年   10篇
  2001年   2篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
61.
Phreatomagmatic volcanoes and their sedimentary products can preserve high‐resolution records of earth surface processes because of their high deposition rate. Songaksan, Jeju Island, Korea, is a phreatomagmatic volcano, which erupted c. 3.7 ka BP in a coastal setting. Its tuff ring preserves a record of intertidal to supratidal facies transition in the basal part, which reveals the position of palaeo‐high‐tide level for at least 13 high‐tide events, and a record of a storm‐surge event in the middle part of the tuff ring, which lasted approximately three tidal cycles. Based on these features, the phreatomagmatic eruption of Songaksan is estimated to have taken place over a month. The sea level at the time was almost identical to that at present. This study shows that coastal phreatomagmatic volcanoes can preserve high‐resolution records of eruption duration and palaeo‐sea level, and can provide accurately levelled and dated data points to the Quaternary sea‐level curve.  相似文献   
62.
The present paper is Part I of a series of three papers prepared by the authors on the methods useful for ultimate limit state assessment of marine structures, that have been developed in the literature during the last few decades. It is considered that such methods are now mature enough to enter day-by-day design and strength assessment practice. The aims of the three papers are to conduct some benchmark studies of such methods on ultimate limit state assessment of (unstiffened) plates, stiffened panels, and hull girders of ships and ship-shaped offshore structures, using some candidate methods such as ANSYS nonlinear finite element analysis (FEA), DNV PULS, ALPS/ULSAP, ALPS/HULL, and IACS common structural rules (CSR) methods. As an illustrative example, an AFRAMAX-class hypothetical double hull oil tanker structure designed by CSR method is studied. In the present paper (Part I), the ultimate limit state assessment of unstiffened plates under combined biaxial compression and lateral pressure loads is emphasized using ANSYS, DNV PULS, and ALPS/ULSAP methods, and their resulting computations are compared. Part II will deal with methods for the ultimate limit state assessment of stiffened panels under combined biaxial compression and lateral pressure using ANSYS, DNV PULS, and ALPS/ULSAP methods, and Part III will treat methods for the progressive collapse analysis of the hull structure using ANSYS, ALPS/HULL, and IACS CSR methods.  相似文献   
63.
64.
65.
The Chinook salmon (Oncorhynchus tshawytscha) spawns and rears in the cold, freshwater rivers and tributaries of California’s Central Valley, with four separate seasonal runs including fall and late-fall runs, a winter run, and a spring run. Dams and reservoirs have blocked access to most of the Chinook’s ancestral spawning areas in the upper reaches and tributaries. Consequently, the fish rely on the mainstem of the Sacramento River for spawning habitat. Future climatic warming could lead to alterations of the river’s temperature regime, which could further reduce the already fragmented Chinook habitat. Specifically, increased water temperatures could result in spawning and rearing temperature exceedences, thereby jeopardizing productivity, particularly in drought years. Paradoxically, water management plays a key role in potential adaptation options by maintaining spawning and rearing habitat now and in the future, as reservoirs such as Shasta provide a cold water supply that will be increasingly needed to counter the effects of climate change. Results suggest that the available cold pool behind Shasta could be maintained throughout the summer assuming median projections of mid-21st century warming of 2°C, but the maintenance of the cold pool with warming on the order of 4°C could be very challenging. The winter and spring runs are shown to be most at risk because of the timing of their reproduction.  相似文献   
66.
The aim of this study is to improve our knowledge of the processes that lead to clay smear during faulting of a layered sand-clay sequence in an analogue sandbox model. We carefully characterized mechanical properties of the materials used by a series of geotechnical tests. Displacement field was quantified using PIV (Particle Image Velocimetry). The model is water-saturated to allow the deformation of wet clay and sand in one experiment comprising a sand package with a horizontal layer of clay above a predefined rigid basement fault. The thickness and rigidity of the clay layer are the parameters varied in this study. The model shows a range of structures that are related to competence contrast between sand and different clay types. Results show ductile shearing of soft clay with a transition to brittle fracturing of stiff clay accompanied by the formation of rotating clay blocks in the fault zone. Localized deformation is observed through time showing (i) the propagation of one active fault migrating laterally through the sediment package, and (ii) the formation of a stable prism between two or more active faults that gets progressively smaller with minor rotation of the hanging wall fault. Continuous clay smear is observed resulting from the lateral injection of clay as well as from a reworked mixture of sand and clay.  相似文献   
67.
Although rainfall is assumed spatially uniform in conventional hydrological modelling for rainfall–runoff simulations, moving storms have been shown to have substantial influence on flow hydrographs. In this study, criteria for attainment of the equilibrium discharge from watersheds subjected to moving storms were examined. Non-linear numerical kinematic-wave models were developed to simulate runoff from an overland plane and from a V-shaped catchment. Dimensional analysis was applied to obtain the independent variables to be used as control factors in performing a series of numerical tests. The results indicate that, for storms moving downstream, runoff can attain equilibrium discharge even though the storm length is shorter than the watershed length and the rainfall duration is less than the time to equilibrium of the watershed for stationary uniform storms. The phenomenon of attainment of equilibrium discharge from watersheds subjected to moving storms is contradictory to conventional hydrologic design, which assumes the storm duration must equal the time to equilibrium to attain the maximum discharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
68.
Using a variety of oceanographic data, including direct volume transports in the Florida Strait, and Argo float profiles and drift velocities at 24°N and 36°N in the North Atlantic, inverse calculations are presented in which the net meridional transport, down to a depth of approximately 1600 m, is estimated at both latitudes for a 5-year period 2003–2007. The upper ocean is divided into seven layers using neutral density, and mass conservation constraints have been applied to a closed box bounded by these latitudes, including the Florida Strait. Ekman layer transports have been included in the top-most layer, and the inverse calculation has solved for changes from the initial reference velocities, Ekman and Florida Strait transports, given a priori estimates on the accuracy of each of these quantities. Solutions with and without transformations due to Mediterranean Water (MW) formation are made. Our results indicate that (1) time-averaged transport estimates derived from Argo have significant less eddy noise than individual hydrographic sections, (2) Argo drift velocities provide information to the inverse solution for the ocean interior, and (3) comparison of the total integrated interior mass transports in the thermocline waters for the period 2003–2007 with the previous estimates based on trans-ocean hydrographic sections shows that, within the errors of our estimation, the upper limb of the Atlantic Meridional Overturning Circulation has not significantly changed since 1957.  相似文献   
69.
Remarkable advances in age dating Mississippi Valley-type (MVT) lead-zinc deposits provide a new opportunity to understand how and where these deposits form in the Earth's crust. These dates are summarized and examined in a framework of global tectonics, paleogeography, fluid migration, and paleoclimate. Nineteen districts have been dated by paleomagnetic and/or radiometric methods. Of the districts that have both paleomagnetic and radiometric dates, only the Pine Point and East Tennessee districts have significant disagreements. This broad agreement between paleomagnetic and radiometric dates provides added confidence in the dating techniques used. The new dates confirm the direct connection between the genesis of MVT lead-zinc ores with global-scale tectonic events. The dates show that MVT deposits formed mainly during large contractional tectonic events at restricted times in the history of the Earth. Only the deposits in the Lennard Shelf of Australia and Nanisivik in Canada have dates that correspond to extensional tectonic events. The most important period for MVT genesis was the Devonian to Permian time, which corresponds to a series of intense tectonic events during the assimilation of Pangea. The second most important period for MVT genesis was Cretaceous to Tertiary time when microplate assimilation affected the western margin of North America and Africa-Eurasia. There is a notable paucity of MVT lead-zinc ore formation following the breakup of Rodinia and Pangea. Of the five MVT deposits hosted in Proterozoic rocks, only the Nanisivik deposit has been dated as Proterozoic. The contrast in abundance between SEDEX and MVT lead-zinc deposits in the Proterozoic questions the frequently suggested notion that the two types of ores share similar genetic paths. The ages of MVT deposits, when viewed with respect to the orogenic cycle in the adjacent orogen suggest that no single hydrologic model can be universally applied to the migration of the ore fluids. However, topographically driven models best explain most MVT districts. The migration of MVT ore fluids is not a natural consequence of basin evolution; rather, MVT districts formed mainly where platform carbonates had some hydrological connection to orogenic belts. There may be a connection between paleoclimate and the formation of some MVT deposits. This possible relationship is suggested by the dominance of evaporated seawater in fluid inclusions in MVT ores, by hydrological considerations that include the need for multiple-basin volumes of ore fluid to form most MVT districts, and the need for adequate precipitation to provide sufficient topographic head for topographically-driven fluid migration. Paleoclimatic conditions that lead to formation of evaporite conditions but yet have adequate precipitation to form large hydrological systems are most commonly present in low latitudes. For the MVT deposits and districts that have been dated, more than 75% of the combined metal produced are from deposits that have dates that correspond to assembly of Pangea in Devonian through Permian time. The exceptional endowment of Pangea and especially, North America with MVT lead-zinc deposits may be explained by the following: (1) Laurentia, which formed the core of North America, stayed in low latitudes during the Paleozoic, which allowed the development of vast carbonate platforms; (2) intense orogenic activity during the assembly of Pangea created ground preparation for many MVT districts through far-field deformation of the craton; (3) uplifted orogenic belts along Pangean suture zones established large-scale migration of basin fluids; and (4) the location of Pangea in low latitudes with paleoclimates with high evaporation rates led to the formation of brines by the evaporation of seawater and infiltration of these brines into deep basin aquifers during Pangean orogenic events.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号