首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   12篇
  国内免费   7篇
大气科学   10篇
地球物理   95篇
地质学   117篇
海洋学   51篇
天文学   69篇
自然地理   25篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   5篇
  2014年   12篇
  2013年   12篇
  2012年   10篇
  2011年   18篇
  2010年   16篇
  2009年   22篇
  2008年   20篇
  2007年   19篇
  2006年   13篇
  2005年   15篇
  2004年   16篇
  2003年   11篇
  2002年   13篇
  2001年   5篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1976年   6篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有367条查询结果,搜索用时 234 毫秒
131.
Surface water samples were collected from Langtang Lirung glacier outlet point to the Narayani river system in central Nepal in order to investigate the role of elevation in the variation of chemistry along the drainage networks. The chemistry of Langtang–Narayani river system was dominated by sulfide oxidation coupled with carbonate dissolution and weathering of silicate minerals. Calcium and magnesium concentrations were relatively higher than other cations and the sum of both species strongly correlated with alkalinity, supporting the dissolution of carbonate and dolomite as the dominant source for these ions. Aluminosilicate minerals primarily as albite and anorthite appeared as dominant silicate minerals within the drainage basin. Bisiallitization was the dominant type of weathering within the entire drainage system. Hydrogen ion concentration was lower in the low elevation sites than in high elevation sites reflecting the more consumption of carbon dioxide in the low elevation sites due to enhanced chemical weathering rates. Furthermore, major solutes like sum of base cations, silicon as well as alkalinity increased in concentration in the lower elevation sites. All regulating factors appeared to be directly related to elevation and hence elevation appeared to be the prime factor for the variation in chemical species along the Langtang–Narayani river system. Toshiyuki Masuzawa: deceased.  相似文献   
132.
Temporal changes in paleoproductivity of Lake Biwa (Japan) over the past 32 kyr have been studied by analyzing bulk organic carbon and photosynthetic pigments (chlorins) in the BIW95-5 core. Primary productivity was estimated on the assumption of C/Norg values of 8 for autochthonous organic matter (OM) and 25 for allochthonous OM and using an equation developed for the marine environment. The estimate indicates that primary productivity ranges from 50 to 90 g C m?2 yr?1 in the Holocene, while it is ~60 g C m?2 yr?1 on average in the last glacial. Pheophytin a and pheophorbide a are the major chlorins. A downcore profile of chlorin concentration normalized to autochthonous organic carbon (OC) shows a decreasing trend. Chlorin productivity was corrected by removal of the effect of post-burial chlorin degradation. The temporal profile of chlorin productivity thereby obtained resembles that from autochthonous OC.The difference in primary productivity between the Holocene and the glacial for the lake is markedly smaller than that for Lake Baikal situated in the boreal zone. This difference between the two lakes is probably caused by the difference in their climatic conditions, such as temperature and precipitation. Precipitation at Lake Biwa is relatively large during the glacial and the Holocene because of the continuous influence of the East Asian monsoon. Lake Baikal precipitation is generally small as a result of control by the continental (Siberia) climate regime. In addition, a significant difference in productivity between the glacial and the Holocene for Lake Baikal may be essentially controlled by the hydrodynamic systems in the lake.Lake Biwa terrigenous OM input events occurred at least five times over the period 11–32 kyr BP, suggesting enhanced monsoon activity. Molecular examination of the layer with a large input of terrigenous OM during the Younger Dryas indicates that concentrations of terrigenous biomarkers such as n-C27–C31 alkanes, lignin phenols, cutin acids, ω-hydroxy acids and C29 sterols are high, suggesting that soil OM with peat-like material entered the lake as a result of flooding. An enhanced sedimentation rate in the last 3000 years might have been partially caused by agricultural activity around the lake.  相似文献   
133.
In a disk with a low optical depth, dust particles drift radially inward by the Poynting-Robertson (P-R) drag rather than are blown out by stellar radiation pressure following destructive collisions. We investigate the radial distribution of icy dust composed of pure ice and refractory materials in dust-debris disks taking into account the P-R drag and ice sublimation. We find that icy dust particles form a dust ring by their pile-ups at the edge of their sublimation zone, where they sublime substantially at the temperature 100-110 K. The distance of the dust ring is 20-35 AU from the central star with its luminosity L??30L and 65(L?/100L)1/2 AU for L??30L, where L is the solar luminosity. The effective optical depth is enhanced by a factor of 2 for L??100L and more than 10 for L??100L. The optical depth of the outer icy dust disk exceeds that of the inner disk filled with refractory particles, namely, the residue of ice sublimation, which are further subjected to the P-R effect. As a result, an inner hole is formed inside the sublimation zone together with a dust ring along the outer edge of the hole.  相似文献   
134.
135.
We report Permian (ca. 272 Ma ±5.4 Ma) felsic dykes that intrude into the Neoproterozoic (ca. 750 Ma) magmatic suite of the Nagar Parkar Igneous Complex (NPIC), the western extension of the Malani Igneous Suite (MIS). The NPIC consists of Neoproterozoic basement amphibolites and granites (riebeckite–aegirine gray granites and the biotite–hornblende pink granites), all of which are intruded by several generations of mafic and felsic dykes. Granitic magmatism occurred in the Late Neoproterozoic (ca. 750 Ma) due to the subduction‐, followed by the rift‐related tectonic regime during the breakup of the Rodinia supercontinent. U–Th–Pb zircon and monazite CHIME age data of 700–800 Ma from the earlier generation porphyritic felsic dykes suggest the dyke intrusion was coeval or soon after the emplacement of the host granites. Our findings of Permian age orthophyric felsic dykes provide new insights for the prevalence of active tectonics in the MIS during late Paleozoic. Textural features and geochemistry also make the orthophyric dykes distinct from the early‐formed porphyritic dykes and the host granites. Our newly obtained age data combined with geochemistry, suggest the existence of magmatism along the western margin of India (peri‐Gondwana margin) during Permian. Like elsewhere in the region, the Permian magmatism in the NPIC could be associated with the rifting of the Cimmerian micro‐continents from the Gondwana.  相似文献   
136.
Modern marine sediments can be classified into terrigenous, hemipelagic, and pelagic types according to the distances from the land for the sites recovered and in terms of lithological characteristics of sediments. Ancient cherts are the best sedimentary rocks to reconstruct ancient depositional environments and hemipelagic and pelagic cherts can be identified in terms of lithologic and stratigraphic characteristics. However, geochemical characteristics of modern sediments and ancient cherts can discriminate them into these three types. Particularly, the degree of correlation between Fe and Mg in clay minerals is the most effective criterion for the classification, because the concentration of pelagic clay minerals in which the Fe/Mg ratio is constant may become indices for the classification into the three types. The correlation coefficient and goodness-of-fit to a certain regression line were used as indices of the classification and calculated for several sets of modern sediments and ancient cherts totalling to more than 400 samples. The correlation coefficients and the student-t values for the coefficients become better classification indices than the goodness-of-fit andF-values of the analysis of variance. Goodness-of-fit andF-values can be only used as subsidiary indices for the main classification indices of the correlation coefficients. The classification on the basis of the degree of correlation between Fe and Mg is effective and this approach can be used for other major chemical elements such as Al, K, and Na, if some sequential values of chemical analyses are available.  相似文献   
137.
It is shown by numerical simulations that enhanced current density can generate double layers, even when the electron drift speed is significantly below the electron thermal speed. The double layer potential is spontaneously produced by the space charge self-consistently developed inside the simulation domain. The particle influxes from the low-potential boundary of our simulation domain are independent of the outfluxes. The potential difference φ0 is shown increase with increasing number density of the injection current. Strong double layers with potential energy 0 ? kT0 (the electron thermal energy) are stably formed when the injection electron current much exceeds the thermal current of ambient electrons. The backscattered and mirrored electrons are found to have stabilizing effects on the current-driven double layers.  相似文献   
138.
139.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   
140.
Several researchers have reported that the mean effective stress of unsaturated soils having a relatively high degree of saturation gradually decreases under fully undrained cyclic loading conditions, and such soils can be finally liquefied like saturated soils. This paper describes a series of simulations of fully undrained cyclic loading on unsaturated soils, conducted using an elastoplastic model for unsaturated soils. This model is a critical state soil model formulated using effective stress tensor for unsaturated soils, which incorporates the following concepts: (a) the volumetric movement of the state boundary surface containing the critical state line owing to the variation in the degree of saturation; (b) the soil water characteristic curve considering the effects of specific volume and hydraulic hysteresis; and (c) the subloading surface concept for considering the effect of density. Void air is assumed to be an ideal gas obeying Boyle's law. The proposed model is validated through comparisons with past results. The simulation results show that the proposed model properly describes the fully undrained cyclic behavior of unsaturated soils, such as liquefaction, compression, and an increase in the degree of saturation. Finally, the effects of the degree of saturation, void ratio, and confining pressure on the cyclic strength of unsaturated soils are described by the simulation results. The liquefaction resistance of unsaturated soils increases as the degree of saturation and the void ratio decrease, and as the confining pressure increases. Furthermore, the degree of saturation has a greater effect on the liquefaction resistance than the confining pressure and void ratio. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号