首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3100篇
  免费   91篇
  国内免费   19篇
测绘学   85篇
大气科学   245篇
地球物理   612篇
地质学   889篇
海洋学   317篇
天文学   792篇
综合类   5篇
自然地理   265篇
  2021年   17篇
  2020年   29篇
  2019年   40篇
  2018年   53篇
  2017年   35篇
  2016年   62篇
  2015年   52篇
  2014年   71篇
  2013年   171篇
  2012年   92篇
  2011年   135篇
  2010年   94篇
  2009年   158篇
  2008年   118篇
  2007年   132篇
  2006年   107篇
  2005年   106篇
  2004年   116篇
  2003年   96篇
  2002年   109篇
  2001年   84篇
  2000年   99篇
  1999年   76篇
  1998年   81篇
  1997年   49篇
  1996年   49篇
  1995年   48篇
  1994年   47篇
  1993年   36篇
  1992年   33篇
  1991年   36篇
  1990年   33篇
  1989年   37篇
  1988年   27篇
  1987年   41篇
  1986年   29篇
  1985年   52篇
  1984年   55篇
  1983年   53篇
  1982年   47篇
  1981年   47篇
  1980年   46篇
  1979年   31篇
  1978年   28篇
  1977年   38篇
  1976年   29篇
  1975年   34篇
  1974年   14篇
  1973年   20篇
  1972年   18篇
排序方式: 共有3210条查询结果,搜索用时 31 毫秒
131.
The Budyko framework characterizes landscape water cycles as a function of climate. We used this framework to identify regions with contrasting hydroclimatic change during the past 50 years in Sweden. This analysis revealed three distinct regions: the mountains, the forests, and the areas with agriculture. Each region responded markedly different to recent climate and anthropogenic changes, and within each region, we identified the most sensitive subregions. These results highlight the need for regional differentiation in climate change adaptation strategies to protect vulnerable ecosystems and freshwater resources. Further, the Budyko curve moved systematically towards its water and energy limits, indicating augmentation of the water cycle driven by changing vegetation, climate and human interactions. This finding challenges the steady state assumption of the Budyko curve and therefore its ability to predict future water cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
132.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
133.
134.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   
135.
136.
Although most of the world's uranium exists as pitchblende or uraninite, this mineral can be weathered to a great variety of secondary uranium minerals, most containing the uranyl cation. Anthropogenic uranium compounds can also react in the environment, leading to spatial–chemical alterations that could be useful for nuclear forensics analyses. Soft X‐ray absorption spectroscopy (XAS) has the advantages of being non‐destructive, element‐specific and sensitive to electronic and physical structure. The soft X‐ray probe can also be focused to a spot size on the order of tens of nanometres, providing chemical information with high spatial resolution. However, before XAS can be applied at high spatial resolution, it is necessary to find spectroscopic signatures for a variety of uranium compounds in the soft X‐ray spectral region. To that end, we collected the near edge X‐ray absorption fine structure (NEXAFS) spectra of a variety of common uranyl‐bearing minerals, including uranyl carbonates, oxyhydroxides, phosphates and silicates. We find that uranyl compounds can be distinguished by class (carbonate, oxyhydroxide, phosphate or silicate) based on their oxygen K‐edge absorption spectra. This work establishes a database of reference spectra for future spatially resolved analyses. We proceed to show scanning X‐ray transmission microscopy (STXM) data from a schoepite particle in the presence of an unknown contaminant.  相似文献   
137.
138.
River deltas along Alaska’s Beaufort Sea coast are used by hatch-year semipalmated sandpipers (Calidris pusilla) after leaving their terrestrial natal sites, but the drivers of their use of these stopover sites on the first “hop” of fall migration are unknown. We quantified sandpiper temporal distribution and abundance as related to food resources at three river deltas during the beginning of their fall migration (post-breeding period) to compare the habitat quality among these deltas. We conducted population counts, sampled invertebrates, and captured birds to collect blood samples from individuals for triglyceride and stable isotope analyses to determine fattening rates and diet. Patterns of sandpiper and invertebrate abundance were complex and varied among deltas and within seasons. River deltas were used by sandpipers from late July to late August, and peak sandpiper counts ranged from 1000 to 4000 individuals, of which 98% were hatch-year semipalmated sandpipers. Isotopic signatures from blood plasma samples indicated that birds switched from a diet of upland tundra to delta invertebrate taxa as the migration season progressed, suggesting a dependence on delta invertebrates. Despite differences in diet among deltas, we found no differences in fattening rates of juvenile sandpipers as indicated by triglyceride levels. The number of sandpipers was positively associated with abundance of Amphipoda and Oligochaeta at the Jago and Okpilak-Hulahula deltas; an isotopic mixing model indicated that sandpipers consumed Amphipoda and Oligochaeta at Jago, mostly Chironomidae at Okpilak-Hulahula and Spionidae at Canning. Regardless of the difference in sandpiper diets at the Beaufort Sea deltas, their similar fattening rates throughout the season indicate that all of these stopover sites provide a critical food resource for hatch-year sandpipers beginning their first migration.  相似文献   
139.
140.

On 22 March 2014, a massive, catastrophic landslide occurred near Oso, Washington, USA, sweeping more than 1 km across the adjacent valley flats and killing 43 people. For the following 5 weeks, hundreds of workers engaged in an exhaustive search, rescue, and recovery effort directly in the landslide runout path. These workers could not avoid the risks posed by additional large-scale slope collapses. In an effort to ensure worker safety, multiple agencies cooperated to swiftly deploy a monitoring and alerting system consisting of sensors, automated data processing and web-based display, along with defined communication protocols and clear calls to action for emergency management and search personnel. Guided by the principle that an accelerating landslide poses a greater threat than a steadily moving or stationary mass, the system was designed to detect ground motion and vibration using complementary monitoring techniques. Near real-time information was provided by continuous GPS, seismometers/geophones, and extensometers. This information was augmented by repeat-assessment techniques such as terrestrial and aerial laser scanning and time-lapse photography. Fortunately, no major additional landsliding occurred. However, we did detect small headscarp failures as well as slow movement of the remaining landslide mass with the monitoring system. This was an exceptional response situation and the lessons learned are applicable to other landslide disaster crises. They underscore the need for cogent landslide expertise and ready-to-deploy monitoring equipment, the value of using redundant monitoring techniques with distinct goals, the benefit of clearly defined communication protocols, and the importance of continued research into forecasting landslide behavior to allow timely warning.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号