首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   626篇
  免费   18篇
  国内免费   5篇
测绘学   13篇
大气科学   47篇
地球物理   168篇
地质学   235篇
海洋学   42篇
天文学   82篇
综合类   3篇
自然地理   59篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   11篇
  2018年   8篇
  2017年   11篇
  2016年   13篇
  2015年   9篇
  2014年   12篇
  2013年   32篇
  2012年   27篇
  2011年   19篇
  2010年   17篇
  2009年   29篇
  2008年   42篇
  2007年   25篇
  2006年   22篇
  2005年   21篇
  2004年   22篇
  2003年   21篇
  2002年   25篇
  2001年   18篇
  2000年   7篇
  1999年   14篇
  1998年   15篇
  1997年   5篇
  1996年   12篇
  1995年   7篇
  1994年   11篇
  1993年   11篇
  1992年   4篇
  1991年   9篇
  1990年   8篇
  1988年   5篇
  1987年   6篇
  1986年   11篇
  1985年   13篇
  1984年   6篇
  1983年   15篇
  1982年   7篇
  1981年   9篇
  1980年   7篇
  1979年   8篇
  1978年   15篇
  1977年   7篇
  1975年   3篇
  1974年   7篇
  1973年   11篇
  1970年   3篇
  1966年   3篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
101.
An environmental concern with hydraulic fracturing for shale gas is the risk of groundwater and surface water contamination. Assessing this risk partly involves the identification and understanding of groundwater–surface water interactions because potentially contaminating fluids could move from one water body to the other along hydraulic pathways. In this study, we use water quality data from a prospective shale gas basin to determine: if surface water sampling could identify groundwater compartmentalisation by low-permeability faults; and if surface waters interact with groundwater in underlying bedrock formations, thereby indicating hydraulic pathways. Variance analysis showed that bedrock geology was a significant factor influencing surface water quality, indicating regional-scale groundwater–surface water interactions despite the presence of an overlying region-wide layer of superficial deposits averaging 30–40 m thickness. We propose that surface waters interact with a weathered bedrock layer through the complex distribution of glaciofluvial sands and gravels. Principal component analysis showed that surface water compositions were constrained within groundwater end-member compositions. Surface water quality data showed no relationship with groundwater compartmentalisation known to be caused by a major basin fault. Therefore, there was no chemical evidence to suggest that deeper groundwater in this particular area of the prospective basin was reaching the surface in response to compartmentalisation. Consequently, in this case compartmentalisation does not appear to increase the risk of fracking-related contaminants reaching surface waters, although this may differ under different hydrogeological scenarios.  相似文献   
102.
103.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a palaeo-storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period. © 2019 John Wiley & Sons, Ltd.  相似文献   
104.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
105.
This ethnoarchaeological study at the Q'eqchi' Maya village of Las Pozas, Guatemala, aimed to refine the understanding of the relationship between soil chemical signatures and human activities for archaeological applications. The research involved phosphorus, exchangeable ion (calcium, potassium, magnesium, sodium), and trace element analysis of soils and earth floors extracted by Mehlich II, ammonium acetate, and DTPA chelate solutions, respectively. The results showed high levels of phosphorus, potassium, magnesium, and pH in food preparation areas, as well as high phosphorus concentrations and low pH in food consumption areas. The traffic areas exhibited low phosphorus and trace element contents, whereas refuse disposal areas were enriched. These results provide important information for the understanding of space use in ancient settlements. © 2002 Wiley Periodicals, Inc.  相似文献   
106.
Fossil bones and teeth from terrestrial environments encode unique rare earth and trace element (REE and TE) signatures as a function of redox conditions, pH, concentrations of complexing ligands, and water-colloid interactions. This signature is set early in the fossilization process and serves as a paleoenvironmental and paleoclimatic proxy. These signatures can also be used to interpret temporal and spatial averaging within vertebrate accumulations, and can help relocate displaced fossil bones back into stratigraphic context. Rare earth elements in vertebrate fossils from upper Eocene and Oligocene strata of Toadstool Geologic Park, northwestern Nebraska, record mixing and evolution of Paleogene vadose or groundwaters and variations in paleoenvironments. REE signatures indicate that HREE-enriched alkaline groundwater reacted with LREE- and MREE-enriched sediments to produce 3-component mixtures. REE signatures become increasingly LREE- and MREE-enriched toward the top of the studied section as the paleoenvironment became cooler and drier, suggesting that REE signatures may be climate proxies. Time series analysis suggests that REE ratios are influenced by cycles of ca. 1050, 800, 570, 440, and 225 ka, similar to some previously determined Milankovitch astronomical and climate periodicities.  相似文献   
107.
Variations in diurnal tidal stress due to Europa’s eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2°, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1° of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value consistent with theoretical expectations and cycloid modeling.  相似文献   
108.
In this study, the influence of climate change to California and Nevada regions was investigated through high-resolution (4-km grid spacing) dynamical downscaling using the WRF (Weather Research & Forecasting) model. The dynamical downscaling was performed to both the GFS (Global forecast model) reanalysis (called GFS-WRF runs) from 2000?C2006 and PCM (Parallel Climate Model) simulations (called PCM-WRF runs) from 1997?C2006 and 2047?C2056. The downscaling results were first validated by comparing current model outputs with the observational analysis PRISM (Parameter-elevation Regressions on Independent Slopes Model) dataset. In general, the dominant features from GFS-WRF runs and PCM-WRF runs were consistent with each other, as well as with PRISM results. The influences of climate change on the California and Nevada regions can be inferred from the model future runs. The averaged temperature showed a positive trend in the future, as in other studies. The temperature increases by around 1?C2°C under the assumption of business as usual over 50?years. This leads to an upward shifting of the freezing level (the contour line of 0°C temperature) and more rain instead of snow in winter (December, January, and February). More hot days (>32.2°C or 90°F) and extreme hot days (>37.8°C or 100°F) are predicted in the Sacramento Valley and the southern parts of California and Nevada during summer (June, July, and August). More precipitation is predicted in northern California but not in southern California. Rainfall frequency slightly increases in the coast regions, but not in the inland area. No obvious trend of the surface wind was indicated. The probability distribution functions (PDF) of daily temperature, wind and precipitation for California and Nevada showed no significant change in shape in either winter or summer. The spatial distributions of precipitation frequency from GFS-WRF and PCM-WRF were highly correlated (r?=?0.83). However, overall positive shifts were seen in the temperature field; increases of 2°C for California and 3°C for Nevada in summer and 2.5°C for California and 1.5°C for Nevada in winter. The PDFs predicted higher precipitation in winter and lower precipitation in the summer for both California and Nevada.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号