首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   5篇
大气科学   6篇
地球物理   31篇
地质学   8篇
海洋学   19篇
天文学   8篇
自然地理   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   7篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
21.
In seismically active regions, active low-angle detachment faults are probably more frequent as is commonly thought and may play an important but still underestimated role in the evolution of landforms and basins. We investigate the tectonically active region of Attica (Greece) in the Aegean back arc as a model region to show how basins and mountain ranges commonly thought to be formed by movements on high-angle normal faults in fact reflect the surface expression of displacements on yet undetected, deep-seated, active low-angle normal detachment faults. Inferences are made based on an integrated study of Attica linking the petrology of clastic sediments with geomorphology and structures, and including few new palynological data. From the Miocene to Recent, three sets of normal detachment fault systems were successively active. Shear zones of the 1st (Early Miocene) stage emplaced rocks of the Attic Cycladic high-P metamorphic belt (AC-HP-belt) from depth corresponding to greeschist facies conditions in the brittle, upper crust. In the 2nd stage the WNW dipping Attica low-angle normal detachment fault system between the AC-HP-belt and the un- or weakly metamorphosed rocks of the sub-Pelagonian Zone (SPZ) was active. Clastic sedimentation started in the Late Miocene, during the 2nd stage. Late Miocene and Early Pliocene clastic sediments reveal that during the 2nd stage many areas that presently expose the AC-HP-belt were still covered by the overlying SPZ. Also, now uplifted areas such as the Parnitha mountain range that currently undergo strong erosion were then the sites of sedimentary sinks. The 3rd stage (Late Pliocene through Recent) is associated with dramatic changes in the morphology and recurring steepening of the relief. Reversal of the Parnitha area from the site of deposition into the site of erosion is associated with deposition of coarse conglomerates to the SE of the Parnitha Mt. and S of the Penteli Mt. Sediments of the 3rd stage reflect activity of the here newly described, SSE-dipping Penteli—Athens low-angle detachment fault (PADF) system formed at a high angle to the Attica detachment fault. The outcome of this study is that the present-day geomorphology is to a high degree related to the operation of the PADF system. Steep fault bounding the Athens and Mesogea basins as well as the mountain ranges (Parnitha, Penteli, Hymittos mounts) belongs to its breakaway zone or root into the PADF. Ongoing tectonic movements related to this fault system were responsible for the 1999 Athens (Mw = 6.0) earthquake. We particularly discuss how the PADF may continue into greater depth, the translation magnitude, and how the PADF fits into the wider kinematic framework of the Aegean region.  相似文献   
22.
Data on the distribution of fCO2 were obtained during a cruise in the Aegean Sea during February 2006. The fCO2 of surface water (fCO2sw) was lower than the atmospheric fCO2 (fCO2atm) throughout the area surveyed and ΔfCO2 values varied from ?34 to ?61 μatm. The observed under-saturation suggests that surface waters in the Aegean represent a sink for atmospheric CO2 during the winter of 2006. Higher fCO2sw values were recorded in the ‘less warm’ and ‘less saline’ shallow northernmost part of the Aegean Sea implying that the lower seawater temperature and salinity in this area play a crucial role in the spatial distribution of fCO2sw.A first estimate of the magnitude of the air–sea CO2 exchange and the potential role of the Aegean Sea in the transfer of atmospheric CO2 was also obtained. The air–sea CO2 fluxes calculated using different gas transfer formulations showed that during February 2006, the Aegean Sea absorbs atmospheric CO2 at a rate ranging from ?6.2 to ?11.8 mmol m?2 d?1 with the shipboard recorded wind speeds and at almost half rate (?3.5 to ?5.5 mmol m?2 d?1) with the monthly mean model-derived wind speed. Compared to recent observations from other temperate continental shelves during winter period, the Aegean Sea acts as a moderate to rather strong sink for atmospheric CO2.Further investigations, including intensive spatial and temporal high-resolution observations, are necessary to elucidate the role of the Aegean Sea in the process of transfer of atmospheric CO2 into the deep horizons of the Eastern Mediterranean.  相似文献   
23.
This paper presents results of numerical modelling of site response for Thessaloniki, obtained with two different 2D methods; a finite difference and a finite element method. Ground motion across a 2D model of the subsoil of the city has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms of a weak event and of stronger ones. These results are then compared with the observations in time domain and frequency domain. The role of the soil formations with high attenuation in the lateral propagation and the effect of the differential motion close to the lateral variations are also pinpointed. The stronger events were finally used to compute strong ground motion in order to reveal and to discuss practical engineering aspects such as peak ground acceleration value, the most familiar indicator in seismic norms, the soil to rock spectral coefficients for the period bandwidth of interest, and the aggravation factor in terms of 2D to 1D response spectra as a useful ruler to account for complex site effects.  相似文献   
24.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   
25.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   
26.
Recently, black carbon has been introduced as the form of carbon that may be separated from the biologically mediated carbon cycle thereby representing the non-bioavailable fraction of the estimated organic carbon. It has been speculated that the bioavailability of organic matter may be a limiting factor for the presence of active bacteria within the sediments. In order to address this question, marine sediments were collected from the Thracian Sea (Eastern Mediterranean), a complex system impacted by riverine inputs and Black Sea water masses. In addition to counts of total bacteria, we estimated the fraction of active bacteria by using a destaining step to the DAPI staining method. Black carbon was also estimated following the thermal oxidation method in order to determine the fraction of the refractory organic matter. The fraction of black carbon to total organic carbon varied from 16% to 53% indicating that black carbon constitutes a significant pool of sedimentary organic carbon in the Thracian sea. A fraction ranging from 18% to 97% was scored as nucleoid containing cells. We did not record any significant differences in the fraction of nucleoid-containing bacteria among sediment depths (P<0.05) indicating that there was no accumulation of dead bacterial cells with depth. The same was observed for the fraction of black carbon and bioavailable organic carbon with sediment depth (P<0.05) indicating that benthic consumers are not the key regulators of the organic matter pool in these sediments but have a minor effect. A possible reason for these observations and for the uncoupling between the active bacterial fraction and the bioavailability of organic matter could be (i) the presence of refractory components in the estimated bioavailable organic matter and (ii) the hydrological and geological complexity of the study area. The North Aegean marginal slopes are highly unstable experiencing frequent seismic events. These events are capable of inducing sediment transport from the upper slopes thus altering the entire sediment profile. On the other hand, the significant correlations that were recorded between nucleoid-containing cells and phytopigments (chlorophyll a, phaeopigments, chloroplastic pigment equivalents) at all sediment depths indicate that bacterial communities respond immediately to the deposited phytodetritus, using it as a primary source of carbon and energy. Our data suggests that the Thracian Sea sediments are by no means homogeneous and can best be described as a mosaic controlled by numerous local and regional environmental factors.  相似文献   
27.
The seasonal, spatial and bathymetric changes in the distribution of chloroplastic pigments (Chl a, phaeopigments and CPE), TOC, TON, ATP, bottom water nutrient content and the main biochemical classes of organic compounds (lipids, proteins and carbohydrates) were recorded from May 1994 to September 1995 over the continental margin of northern Crete. The concentration of chloroplastic pigment equivalents (CPE) was always low, dropping dramatically along the shelf-slope gradient. Microbial activity (ATP) also dropped sharply beyond the continental shelf following a distribution pattern similar to TOC and TON. Lipid, protein and carbohydrate concentrations, as well as biopolymeric carbon were comparable to those reported for other more productive areas, however, the quality of the organic matter itself was rather poor. Thus, carbohydrates, the dominant biochemical class, were characterised by being highly (80–99%) refractory, as soluble carbohydrates represented (on annual average) only 6% of the total carbohydrate pool. Protein and lipid concentrations strongly decreased with depth, indicating depletion of trophic resources in the bathyal zone. Proteins appeared to be the more degradable compounds and indeed the protein to carbohydrate ratios were found to decrease strongly in the deeper stations. Organic matter content and quality decreased both with increasing distance from the coast and within the sediment. All sedimentary organic compounds were found to vary between sampling periods, with the changes being more pronounced over the continental shelf. The different temporal patterns of the various components suggest a different composition and/or origin of the OM inputs during the different sampling periods. The amount of material reaching the sediments below 540 m is extremely low, suggesting that most of the organic material is decomposed and/or utilised before reaching the sea floor. In conclusion, the continental shelf and bathyal sediments of the Cretan Sea can be considered, from a trophic point of view, as two different subsystems.  相似文献   
28.
Meiobenthic data from two microtidal sandy beaches of the eastern Mediterranean (Crete, Greece) were used to investigate patterns of both alpha and beta diversity in space and time. Copepod assemblages and environmental variables related to sediment characteristics, morphodynamics and food were studied over a year at four distinct habitats at each beach; the retention, resurgence and saturation zones of Salvat's intertidal scheme (midlittoral zone), and the surf zone of the sublittoral. Αlpha diversity analysis indicated similar species richness at both beaches when the whole 13-month data set was considered but was higher at the sheltered site when each sampling period was examined separately. Both beaches supported higher diversity in the sublittoral zone. Species richness increased seawards at the midlittoral zone of the sheltered site whereas, no pattern was evident at the exposed site, where the intense hydrodynamic conditions homogenized the sediments. Beta diversity increased markedly towards the sublittoral, indicating greater differences in alpha diversity between the sublittoral and the midlittoral zone. Species turnover was more variable at the exposed beach and at the most landward stations, where environmental conditions change often between extremes. A proportion of the variation in alpha diversity was explained by food availability at both beaches and additionally by grain size at the sheltered site. However, no environmental variable explained beta diversity patterns. Although the results of our study support the hypothesis of Multicausal Environmental Severity proposed for sandy beach macrofauna, we believe the classic Intermediate Disturbance Hypothesis is a more appropriate framework for the meiofauna communities of the studied sites.  相似文献   
29.
Some past October Draconid shower meteoroids fell apart in a spray of fragments at the end of their trajectory before slowing down, from which it was concluded that these were among the most fragile meteoroids known. In those instances, the dust could not be reliably traced to a particular return of the parent comet 21P/Giaconini-Zinner. On October 8th, 2011, Earth was predicted to transverse the 1900 A.D. dust ejecta of the comet. In 1900, the comet’s perihelion distance first moved significantly inwards to the Sun and ejection conditions could have been unusual. An airborne observing campaign was organized, with several teams contributing imaging and spectrographic cameras to study the manner in which these meteoroids released the volatile element sodium during the ablation process in the Earth’s atmosphere. IMCCE, ESA, and the SETI Institute contributed spectrographic cameras based on low-light WATEC 902H2 Ultimate, low-light LCC1, and GenII XX1332 image intensified cameras. An outburst was observed, much as predicted. Despite a lack of bright meteors, a total of 15 Draconid spectra were recorded. All show evidence of an early release of sodium. The loss of sodium was observed to coincide with the formation of a distinct wake of fragments. The observations show that 21P/Giacobini-Zinner ejected fragile meteoroids during the return in 1900. Those grains may have lost some sodium even before impacting Earth.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号