首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1057篇
  免费   27篇
  国内免费   3篇
测绘学   20篇
大气科学   34篇
地球物理   574篇
地质学   213篇
海洋学   2篇
天文学   219篇
自然地理   25篇
  2020年   14篇
  2018年   16篇
  2017年   15篇
  2016年   41篇
  2015年   29篇
  2014年   43篇
  2013年   45篇
  2012年   16篇
  2011年   27篇
  2010年   28篇
  2009年   19篇
  2008年   16篇
  2007年   12篇
  2006年   17篇
  2005年   16篇
  2002年   11篇
  2000年   15篇
  1999年   12篇
  1998年   10篇
  1997年   13篇
  1996年   14篇
  1995年   15篇
  1994年   22篇
  1993年   12篇
  1992年   17篇
  1991年   18篇
  1990年   15篇
  1989年   24篇
  1988年   21篇
  1987年   33篇
  1986年   26篇
  1985年   19篇
  1984年   20篇
  1983年   25篇
  1982年   24篇
  1981年   26篇
  1980年   17篇
  1979年   18篇
  1978年   13篇
  1977年   21篇
  1976年   16篇
  1975年   18篇
  1973年   25篇
  1972年   16篇
  1971年   20篇
  1970年   11篇
  1969年   13篇
  1967年   12篇
  1963年   10篇
  1960年   11篇
排序方式: 共有1087条查询结果,搜索用时 15 毫秒
31.
Špičák  A.  Mrlina  J.  Jindra  D.  Mervart  L. 《Studia Geophysica et Geodaetica》1997,41(4):319-328
The western part of the Bohemian Massif is characterized by repeated occurrences of intraplate earthquake swarms. To study surface deformations of this anomalous region, a network covering about 2000 square kilometres for repeated geodetic measurements was established in 1993 - 1994. The positions of the individual points of the network were carefully picked with respect to local tectonic structure and earthquake foci distribution. GPS and precise levelling measurements were performed 1-2 times a year. The GPS data were processed by Bernese GPS software. No tendency to any displacement - either horizontal or vertical - of geological blocks was derived from the geodetic data for the period 1993 - 96. Only displacements of less than 5 mm/year in average could occur in the whole region in that period; larger displacements would have been revealed by our measurements.  相似文献   
32.
Summary Air pollution problem in the Czech Republic is very complex due to large number of factors as turbulent dispersion and chemical reactions concurring in the status of the PBL. For this 3D distribution of pollutants is a key information that cannot be given by conventional monitoring stations. Combined use of DIAL lidar and sodar can give access to such information. Case studies of air pollutants transport are presented using 3D concentration fields of NO2 and ozone measured by lidar and meteorological conditions monitored by Doppler Sodar.  相似文献   
33.
34.
Subduction and exhumation dynamics can be investigated through analysis of metamorphic and deformational evolution of associated high‐grade rocks. The Erzgebirge anticline, which forms at the boundary between the Saxothuringian and Teplá‐Barrandian domains of the Bohemian Massif, provides a useful study area for these processes owing to the occurrence of numerous meta‐basites preserving eclogite facies assemblages, and coesite and diamond bearing quartzofeldspathic lithologies indicating subduction to deep mantle depths. The prograde and retrograde evolution of meta‐basite from the Czech portion of the Erzgebirge anticline has been constrained through a combination of thermodynamic modelling and conventional thermobarometry. Garnet growth zoning indicates that the rocks underwent burial and heating to peak conditions of 2.6 GPa and at least 615 °C. Initial exhumation occurred with concurrent cooling and decompression resulting in the growth of amphibole and zoisite poikiloblasts overgrowing and including the eclogite facies assemblage. The development of clinopyroxene–plagioclase–amphibole symplectites after omphacite and Al‐rich rims on matrix amphibole indicate later heating at the base of the lower crust. Omphacite microstructures, in particular grain size analysis and lattice‐preferred orientations, indicate that the prograde evolution was characterized by a constrictional strain geometry transitioning into plane strain and oblate fabrics during exhumation. The initial constrictional strain pattern is interpreted as being controlled by competing slab pull and crustal buoyancy forces leading to necking of the subducting slab. The transition to plane strain and flattening geometries represents transfer of material from the subducting lithosphere into a subduction channel, break‐off of the dense slab and rebound of the buoyant crustal material.  相似文献   
35.
Structural, petrological and textural studies are combined with phase equilibria modelling of metapelites from different structural levels of the Roc de Frausa Massif in the Eastern Pyrenees. The pre‐Variscan lithological succession is divided into the Upper, Intermediate and Lower series by two orthogneiss sheets and intruded by Variscan igneous rocks. Structural analysis reveals two phases of Variscan deformation. D1 is marked by tight to isoclinal small‐scale folds and an associated flat‐lying foliation (S1) that affects the whole crustal section. D2 structures are characterized by tight upright folds facing to the NW with steep NE–SW axial planes. D2 heterogeneously reworks the D1 fabrics, leading to an almost complete transposition into a sub‐vertical foliation (S2) in the high‐grade metamorphic domain. All structures are affected by late open to tight, steeply inclined south‐verging NW–SE folds (F3) compatible with steep greenschist facies dextral shear zones of probable Alpine age. In the micaschists of the Upper series, andalusite and sillimanite grew during the formation of the S1 foliation indicating heating from 580 to 640 °C associated with an increase in pressure. Subsequent static growth of cordierite points to post‐D1 decompression. In the Intermediate series, a sillimanite–biotite–muscovite‐bearing assemblage that is parallel to the S1 fabric is statically overgrown by cordierite and K‐feldspar. This sequence points to ~1 kbar of post‐D1 decompression at 630–650 °C. The Intermediate series is intruded by a gabbro–diorite stock that has an aureole marked by widespread migmatization. In the aureole, the migmatitic S1 foliation is defined by the assemblage biotite–sillimanite–K‐feldspar–garnet. The microstructural relationships and garnet zoning are compatible with the D1 pressure peak at ~7.5 kbar and ~750 °C. Late‐ to post‐S2 cordierite growth implies that F2 folds and the associated S2 axial planar leucosomes developed during nearly isothermal decompression to <5 kbar. The Lower series migmatites form a composite S1–S2 fabric; the garnet‐bearing assemblage suggests peak P–T conditions of >5 kbar at suprasolidus conditions. Almost complete consumption of garnet and late cordierite growth points to post‐D2 equilibration at <4 kbar and <750 °C. The early metamorphic history associated with the S1 fabric is interpreted as a result of horizontal middle crustal flow associated with progressive heating and possible burial. The upright F2 folding and S2 foliation are associated with a pressure decrease coeval with the intrusion of mafic magma at mid‐crustal levels. The D2 tectono‐metamorphic evolution may be explained by a crustal‐scale doming associated with emplacement of mafic magmas into the core of the dome.  相似文献   
36.
Ozone is one of the most significant secondary pollutants with numerous negative effects on human health and environment including plants and vegetation. Therefore, more effort is made recently by governments and associations to predict ozone concentrations which could help in establishing better plans and regulation for environment protection. In this study, we use two Artificial Neural Network based approaches (MPL and RBF) to develop, for the first time, accurate ozone prediction models, one for urban and another one for rural area in the eastern part of Croatia. The evaluation of actual against the predicted ozone concentrations revealed that MLP and RBF models are very competitive for the training and testing data in the case of Kopa?ki Rit area whereas in the case of Osijek city, MLP shows better evaluation results with 9% improvement in the correlation coefficient. Furthermore, subsequent feature selection process has improved the prediction power of RBF network.  相似文献   
37.
38.
39.
40.
Geoarchaeological investigations on the northeastern shore of Lake Ohrid revealed 3.5 m thick deepwater lacustrine sediments overlying terrestrial vegetation macrofossils, worked wood and abundant potsherds dated to the Late Bronze Age (LBA). Distinct contact of deepwater sediment with the sub-aerial weathered limestone bedrock point to a sudden increase in lake level. According to radiocarbon data, catastrophic flooding occurred shortly after 1214 yr bc. Because the area is located in a highly active seismic zone, we propose that this event was caused by tectonically induced, metre-scale coseismic subsidence related to faults bordering the Ohrid alluvial plain. Moreover, this event coincides well with a dramatic switch in the habitation and settlement strategy in the region. More important, however, is the finding that the age of the proposed massive tectonic event and change in habitation lies within the interval of the proposed ‘earthquake storm’ in the eastern Mediterranean dated to 1225–1175 bc. As the Ohrid-Korça zone belongs to the same tectonic province, a relationship between the abovementioned earthquakes and the proposed event can be expected. This research therefore might provide the first direct evidence of a large-scale earthquake event linkable to the LBA collapse of Europe's first urban civilisation in the Aegean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号