首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   13篇
测绘学   5篇
大气科学   5篇
地球物理   60篇
地质学   87篇
海洋学   4篇
天文学   5篇
综合类   2篇
自然地理   8篇
  2024年   1篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   18篇
  2017年   20篇
  2016年   17篇
  2015年   6篇
  2014年   13篇
  2013年   15篇
  2012年   12篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2001年   1篇
  1994年   1篇
  1992年   1篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有176条查询结果,搜索用时 406 毫秒
31.
Investigation of lake drying attributed to climate change   总被引:1,自引:1,他引:0  
In recent decades, climate change has been of great concern due to its effect on water level and its impact on aquatic ecosystems. Urmia Lake, the largest inland wetland in Iran, has been shrinking. There is a great concern whether it will dry up like the Aral Sea. Therefore, a hydrodynamic model has been developed to simulate the condition of Urmia Lake. The model has been validated using the known annual data on precipitation, evaporation, run off, river discharges and water level which are available for the last 35?years. Different hydrological conditions regarding lake input and output data were tested and water depth was calculated using bathymetry to predict water-level fluctuations in the future. The results predict that the water level will decrease continuously. The lake will be dried up in about 10?years if very dry conditions continue in the region. The drought speed cannot be reduced and there is no potential to develop a water-usage program. Besides, the lake water depth decrease is more slightly, applying alternate wet and dry-period conditions. In some hydrological conditions there is a good potential to consider water development projects. The sensitivity analysis of different parameters indicates that the lake is highly sensitive to river discharges, which implies that the water development project plans will disturb the lake ecosystem if implemented up to 2021 and integrated watershed management plan for the lake can change the condition by regulating the dam output.  相似文献   
32.
Soil temperature (T S) strongly influences a wide range of biotic and abiotic processes. As an alternative to direct measurement, indirect determination of T S from meteorological parameters has been the focus of attention of environmental researchers. The main purpose of this study was to estimate daily T S at six depths (5, 10, 20, 30, 50 and 100?cm) by using a multilayer perceptron (MLP) artificial neural network (ANN) model and a multivariate linear regression (MLR) method in an arid region of Iran. Mean daily meteorological parameters including air temperature (T a), solar radiation (R S), relative humidity (RH) and precipitation (P) were used as input data to the ANN and MLR models. The model results of the MLR model were compared to those of ANN. The accuracy of the predictions was evaluated by the correlation coefficient (r), the root mean-square error (RMSE) and the mean absolute error (MAE) between the measured and predicted T S values. The results showed that the ANN method forecasts were superior to the corresponding values obtained by the MLR model. The regression analysis indicated that T a, RH, R S and P were reasonably correlated with T S at various depths, but the most effective parameters influencing T S at different depths were T a and RH.  相似文献   
33.
This paper proposes a new algorithm for modeling the nonlinear seismic behavior of fractured concrete gravity dams considering dam–reservoir interaction effects. In this algorithm, the cracked concrete gravity dam is modeled by distinct element (DE) method, which has been widely used for the analysis of blocky media. Dynamic response of the reservoir is obtained using boundary element (BE) method. Formulation and various computational aspects of the proposed staggered hybrid approach are thoroughly discussed. To the authors' knowledge, this is the first study of a hybrid DE–BE approach for seismic analysis of cracked gravity dam–reservoir systems. The validity of the algorithm is discussed by developing a two-dimensional computer code and comparing results obtained from the proposed hybrid DE–BE approach with those reported in the literature. For this purpose, a few problems of seismic excitations in frequency- and time-domains, are presented using the proposed approach. Present results agree well with the results from other numerical methods. Furthermore, the cracked Koyna Dam is analyzed, including dam–reservoir interaction effects with focus on the nonlinear behavior due to its top profile crack. Results of the present study are compared to available results in the literature in which the dam–reservoir interaction were simplified by added masses. It is shown that the nonlinear analysis that includes dam–reservoir interaction gives downstream sliding and rocking response patterns that are somehow different from that of the case when the dam–reservoir interaction is approximated employing added masses.  相似文献   
34.
In regional exploration programs, the distribution of elements in known mineral deposits can be used as a guide for the classification of deposits, search for new prospects and modeling ore deposit patterns. The Sanandaj–Sirjan Zone (SSZ) is a major metallogenic zone in Iran, containing lead and zinc, iron, gold, copper deposits. In the central part of the SSZ, lead and zinc mineralization is widespread and hitherto exploration has been based on geological criteria. In this study, we used clustering techniques applied to element distribution for classification lead and zinc deposits in the central part of the SSZ. The hierarchical clustering technique was used to characterize the elemental pattern. Elements associated with lead and zinc deposits were separated into four clusters, encompassing both ore elements and their host rock-forming elements. It is shown that lead and zinc deposits in the central SSZ belong to two genetic groups: a MVT type hosted by limestone and dolomites and a SEDEX type hosted by shale, volcanic rocks and sandstone. The results of elemental clustering were used for pattern recognition by the K-means method and the respective deposits were classified into four distinct categories. K-means clustering also reveals that the elemental associations and spatial distribution of the lead and zinc deposits exhibit zoning in the central part of the SSZ. The ratios of ore-forming elements (Sb, Cd, and Zn) vs. (Pb and Ag) show zoning along an E–W trend, while host rock-forming elements (Mn, Ca, and Mg) vs. (Ba and Sr) show a zoning along a SE–NW trend. Large and medium deposits occur mainly in the center of the studied area, which justify further exploration around occurrences and abandoned mines in this area. The application of a pattern recognition method based on geochemical data from known mineralization in the central SSZ, and the classification derived from it, uncover elemental zoning, identify key elemental associations for further geochemical exploration and the potential to discover possible target areas for large to medium size ore deposits. This methodology can be applied in a similar way to search for new ore deposits in a wide range of known metallogenic zones.  相似文献   
35.
In this paper, the state of stress in the northern Tabas block in east-central Iran is analyzed based on the systematic inversion of aftershock focal mechanisms from the 1978.09.16 Tabas earthquake, to characterise the stress regime that controls most earthquakes in this area. Here, stress inversions of double-couple focal mechanisms of earthquakes recorded during the 30 days following the main shock have been carried out. The calculated average stress regime indicates dominant major 226° to 237° trending compression for the Tabas region. The dominating regime in east-central Iran is thrusting with a minimum stress axis, σ 3, close to vertical. The reconstruction of the main seismotectonic stress in east-central Iran with a NE-SW compression is consistent with independent information of the active plate convergence related to Arabia-Eurasia convergence. Most earthquakes in the mentioned area occur near or around concealed Quaternary thrust faults with their activity being controlled by the NE-SW compression. Where ?, the ratio of principal stress differences, is 0.5, a small difference between σ 2; σ 3 and σ 1 and small amounts of deviatoric stress is indicated. Therefore, for small deviatoric horizontal σ 1 it is not possible to increase and reactivate small sections of basement thrust faults and create secondary basement aftershocks. Reconstructed stress regimes in this study for sedimentary cover (237) and basement (226) of Tabas are similar. Therefore, it seems that the basement and cover were coupled together, possibly along the 2–4 km of upper Precambrian low-grade metamorphic rocks. Then these segments of the fold-and-thrust belt were involved in similar seismic activity under a similar stress regime.  相似文献   
36.
Input data selection for solar radiation estimation   总被引:1,自引:0,他引:1  
Model input data selection is a complicated process, especially for non‐linear dynamic systems. The questions on which inputs should be used and how long the training data should be for model development have been hard to solve in practice. Despite the importance of this subject, there have been insufficient reports in the published literature about inter‐comparison between different model input data selection techniques. In this study, several methods (i.e. the Gamma test, entropy theory, AIC (Akaike's information criterion)/BIC (Bayesian information criterion) have been explored with the aid of non‐linear models of LLR (local linear regression) and ANN (artificial neural networks). The methodology is tested in estimation of solar radiation in the Brue Catchment of England. It has been found that the conventional model selection tools such as AIC/BIC failed to demonstrate their functionality. Although the entropy theory is quite powerful and efficient to compute, it failed to pick up the best input combinations. On the other hand, it is very encouraging to find that the new Gamma test was able to choose the best input selection. However, it is surprising to note that the Gamma test significantly underestimated the required training data while the entropy theory did a better job in this aspect. This is the first study to compare the performance of those techniques for model input selections and still there are many unsolved puzzles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
37.
This paper studies the stochastic responses of secondary systems in base-isolated shear beam structures. A number of base isolation systems such as the laminated rubber bearing (LRB), the resilient-friction base isolator (R-FBI) with or without sliding upper plate, and the EDF system are considered. The stochastic models for the El Centro 1940 and the Mexico City 1985 earthquakes which preserve the non-stationary evolutions of amplitude and frequency content of ground accelerations are used as earthquake excitations. The technique of equivalent linearization is utilized and the mean-square response statistics of secondary systems and primary structure are evaluated. The accuracy of the linearization scheme is verified by comparison with the Monte Carlo simulation results. Statistically estimated peak responses of the secondary system are evaluated and the results are compared with the response spectra for actual earthquake accelerograms. It is shown that the use of base isolation systems, generally, provides considerable protection for structural contents. In particular, the LRB system is remarkably effective in reducing responses of secondary systems. Results for the Mexico City earthquake show that the base-isolated structures are sensitive to long period ground excitations.  相似文献   
38.
Utilizing basic balance laws of saturated granular media, a theoretical model for describing the phenomena of dilatation and densification of dry sand, as well as the increase of pore water pressure of saturated sand during shear loading, is developed. An expression for the free-energy function of loose sands is postulated, and the problem of static shearing of a sand sample is analyzed. Predictions of the model for pore water pressure are compared with those obtained experimentally for dry pluviated and moist vibrated samples of fine Ottawa sand and solid-glass beads and discussed.  相似文献   
39.
In this paper a geometric computational model (GCM) has been developed for calculating the effect of longwall face on the extension of excavation-damaged zone (EDZ) above the gate roadways (main and tail gates), considering the advance longwall mining method. In this model, the stability of gate roadways are investigated based on loading effects due to EDZ and caving zone (CZ) above the longwall face, which can extend the EDZ size. The structure of GCM depends on four important factors: (1) geomechanical properties of hanging wall, (2) dip and thickness of coal seam, (3) CZ characteristics, and (4) pillar width. The investigations demonstrated that the extension of EDZ is a function of pillar width. Considering the effect of pillar width, new mathematical relationships were presented to calculate the face influence coefficient and characteristics of extended EDZ. Furthermore, taking GCM into account, a computational algorithm for stability analysis of gate roadways was suggested. Validation was carried out through instrumentation and monitoring results of a longwall face at Parvade-2 coal mine in Tabas, Iran, demonstrating good agreement between the new model and measured results. Finally, a sensitivity analysis was carried out on the effect of pillar width, bearing capacity of support system and coal seam dip.  相似文献   
40.
A closed-form analytical computation of groundwater travel time (GWTT) for two-layer oceanic small island aquifers is developed assuming steady-state and sharp-interface conditions. The two-layer geology impacts on the GWTT are investigated using the developed analytical solution to achieve a greater transparency of such conceptualizations. The results demonstrate that the inclusion of geologic layering leads to large changes in the GWTT. Sensitivity analyses, using specified dimensionless parameters, are employed to assess the influences of hydraulic conductivity, recharge rate, upper layer thickness, and seawater/freshwater density difference parameters, which influence the GWTT. These evaluations reveal that the GWTT is mainly influenced by the recharge rate and the upper layer thickness compared to the other influential parameters when the typical parameter ranges are considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号