首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   0篇
测绘学   1篇
大气科学   11篇
地球物理   13篇
地质学   42篇
海洋学   28篇
综合类   1篇
自然地理   5篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1993年   2篇
  1987年   1篇
  1985年   3篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有101条查询结果,搜索用时 250 毫秒
31.
32.
Measurements of O2, Fe(II), Mn(II)and HS5 in salt marshsediments in the Tagus Estuary, Portugal, made with a voltammetric microelectrode, reveal strong seasonal differences in pore water composition within the 20~cm deep root zone. In spring, oxygen was below detection limit except close to the sediment surface. Fe(II) was present below 5 cm in concentrations ranging from detection limit to 1700 M. In summer, oxygen was present in the pore water almost to the bottom of the root zone in concentrations ranging from detection limit to more than 100 M. The spatial variability was intense: O2 concentrations as high as 78 M and as low as 25 M existed within 2~mm of each other. Fe(II) was below detection limit except towards the bottom of the root zone. In late fall, oxygen was found to 8 cm depth, but in concentrations lower than in summer, and Fe(II) was present below 9 cm. Mn(II) was found at levels declining from typical values of 200 M in spring to less than 20 M in late fall. With one exception, sulfide was below the detection limit in all measurements. During periods when dissolved Fe(II) is available in the pore water at the same time as 2 is delivered by roots, iron-rich concretions can form on roots. These conditions, which lead to precipitation of iron oxide in the sediment adjacent to roots, exist in spring, when new roots infiltrate anoxic Fe(II) containing sediment. They do not exist in summer, when dissolved Fe(II) is unavailable, or in winter, when oxygen is unavailable. The seasonal redox pattern revealed by the pore water chemistry is driven by the annual cycle of growth and decay of roots.  相似文献   
33.
Relationships between mineral/silicate melt partition coefficients and melt structure have been examined by combining Ca and Mn olivine/melt partitioning data with available melt structure information. Compositions were chosen so that melts with olivine on their liquidii range in degree of polymerization, NBO/T, from ∼0.5 to ∼2.5 under near isothermal conditions (1350-1400°C). Olivine/melt Ca-Mn exchange coefficients, Ca(olivine)/CaO(melt)/MnO(olivine)/MnO(melt) (KD Ca-Mnolivine/melt), as a function of melt NBO/T have a parabolic shape with a minimum KD Ca-Mnolivine/melt-value at NBO/T near 1. Notably, published KD Fe2+-Mgolivine/melt versus NBO/T functions are also parabolic with a maximum in KD Fe2+-Mgolivine/melt near 1 (Kushiro and Mysen, 2002).The olivine/melt partitioning data are modeled in terms of structural units (Qn-species) in the melt. The NBO/T-value corresponding to the minimum KD Ca-Mnolivine/melt is near that where the abundance ratio of Qn-species, XQ3/XQ2, has its largest value. Therefore, the activity coefficient ratio in the melt, γCa2+(melt)/γMn2+(melt), attains a minimum where the abundance ratio of XQ3/XQ2 is at maximum. It is inferred from this relationship that Ca2+ in the melts is dominantly bonded to nonbridging oxygen (Ca-NBO) in Q3-species, whereas Mn2+ is bonded to nonbridging oxygen (Mn-NBO) in less polymerized Qn-species such as Q2.  相似文献   
34.
Partitioning of Ca, Mn, Mg, and Fe2+ between olivine and melt has been used to examine the influence of energetically nonequivalent nonbridging oxygen in silicate melts. Partitioning experiments were conducted at ambient pressure in air and 1400°C with melts in equilibrium with forsterite-rich olivine (Fo >95 mol%). The main compositional variables of the melts were NBO/T and Na/(Na+Ca). In all melts, the main structural units were of Q4, Q3, and Q2 type with nonbridging oxygen, therefore, in the Q3 and Q2 units.For melts with high Q3/Q2-abundance ratio (corresponding to NBO/T near 1), increasing Na/(Na+Ca) [and Na/(Na+Ca+Mn+Mg+Fe2+)] results in a systematic decrease of the partition coefficients, KCaol/melt, KMnol/melt, KMgol/melt, and KFe2+ol/melt, because of ordering of the network-modifying Ca, Mn, Mg, and Fe2+ among nonbridging oxygen in Q3 and Q2 structural units. This decrease is more pronounced the smaller the ionic radius of the cation. With decreasing Q3/Q2 abundance ratio (less-polymerized melts) this effect becomes less pronounced.Activity-composition relations among network-modifying cations in silicate melts are, therefore, governed by availability of energetically nonequivalent nonbridging oxygen in individual Qn-species in the melt. As a result, any composition change that enhances abundance of highly depolymerized Qn-species will cause partition coefficients to decrease.  相似文献   
35.
36.
The solubility behavior of K2O, Na2O, Al2O3, and SiO2 in silicate-saturated aqueous fluid and coexisting H2O-saturated silicate melts in the systems K2O-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O has been examined in the 1- to 2-GPa pressure range at 1100°C. Glasses of Na- and K-tetrasilicate compositions with 0, 3, and 6 mol% Al2O3 were used as starting materials. In both systems, the oxides dissolve incongruently in aqueous fluid and silicate melt. When recalculated to an anhydrous basis, the aqueous fluids are enriched in alkalis and depleted in silica and alumina relative to their proportions in the starting materials. The extent of incongruency is more pronounced in the Na2O-Al2O3-SiO2-H2O system than in the K2O-Al2O3-SiO2-H2O system.The partition coefficients of the oxides, Doxidefluid/melt, are linear and positive functions of the oxide concentration in the fluid for each composition. There is a slight dependence of the partition coefficients on bulk composition. No effect of pressure could be discerned. For alkali metals, the fluid/melt partition coefficients range from 0.06 to 0.8. For Al2O3 this range is 0.01 to 0.2, and for SiO2, it is 0.01 to 0.32. For all compositions, DK2Ofluid/melt∼DNa2Ofluid/melt>DSiO2fluid/melt>DAl2O3fluid/melt for the same oxide concentration in the fluid. DK2Ofluid/melt, DNa2Ofluid/melt, and DSiO2fluid/melt correlate negatively with the Al2O3 content of the systems. This correlation is consistent with a solubility model of alkalis that involve associated KOH°, NaOH°, silicate, and aluminate complexes.  相似文献   
37.
Partitioning of Mg and Fe2+ between olivine and mafic melts has been determined experimentally for eight different synthetic compositions in the temperature range between 1335 and 1425°C at 0.1 MPa pressure and at fo2 ∼1 log unit below the quartz-fayalite-magnetite buffer. The partition coefficient [KD = (Fe2+/Mg)ol/(Fe2+/Mg)melt] increases from 0.25 to 0.34 with increasing depolymerization of melt (NBO/T of melt from 0.25-1.2), and then decreases with further depolymerization of melt (NBO/T from 1.2-2.8). These variations are similar to those observed in natural basalt-peridotite systems. In particular, the variation in NBO/T ranges for basaltic-picritic melts (0.4-1.5) is nearly identical to that obtained in the present experiments. Because the present experiments were carried out at constant pressure (0.1 MPa) and in a relatively small temperature range (90°C), the observed variations of Mg and Fe2+ partitioning between olivine and melt must depend primarily on the composition or structure of melt. Such variations of KD may depend on the relative proportions of four-, five-, and six-coordinated Mg2+ and Fe2+ in melt as a function of degree of NBO/T.  相似文献   
38.
Following a catastrophic flash flood in July 1996, as much as 50 cm of post-glacial clays were deposited in less than 2 days in the upper reaches of the Saguenay Fjord (Quebec, Canada), disrupting the normal sedimentation and diagenetic regimes. We report detailed geochemical analyses of sediments (porosity, Eh, organic and inorganic carbon, Fe and Mn reactive solid phases, and acid volatile sulfide) and porewaters (salinity, dissolved organic carbon (DOC), Fe(II), Mn(II), nitrate, ammonium, and sulfate) for seven stations located in the Saguenay Fjord. Three of these (SAG-05, SAG-09, and SAG-30) were visited in 1996 and once per year thereafter to document the chemical evolution of the sediment toward a new steady state. The flood deposits contain less organic carbon and more inorganic carbon than the indigenous fjord sediments. The flood deposit modified the distribution patterns of reactive Mn and Fe as a result of the reduction of Mn and Fe oxides delivered with the deposit and those concentrated at the now buried former sediment-water interface. Most of the Mn(II) migrated to the new sediment-water interface, where a Mn-rich layer was formed. In contrast, much of the Fe(II) was precipitated as sulfides and remained trapped at or close to the old interface. A nitrate peak developed in the porewater at the old sediment-water interface, possibly because of the oxidation of ammonia by Mn oxides. The distributions of porewater DOC within the flood deposit correlate with the distributions of dissolved Mn(II) and Fe(II), suggesting that adsorbed DOC was released when metal oxides were reduced.  相似文献   
39.
A 70-year history of precipitation δ18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33o34′37.8″ N, 91o10′35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ18O records and the significant positive rela-tionships between monsoon/non-monsoon δ18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ18O relationship is 1.3℃/‰ for non-monsoon δ18O values and spring air temperature, and 0.4℃/‰ for monsoon δ18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.  相似文献   
40.
The propagation of acoustic waves through a periodic layered medium is analyzed by an eigenvalue decomposition of the propagator matrix. This reveals how the velocity and attenuation of the layered medium vary as function of the periodic structure, material parameters and frequency. There are two important parameters which control the wave propagation in the periodic medium: the reflection coefficient and the ratio between one‐way traveltimes of the two parts of the cyclic layered medium. For low frequencies (large values of wavelength to layer thickness), the layered structure behaves as an effective medium, then there is a transition zone, and for higher frequencies (small values of wavelength to layer thickness) the medium is described by the time‐average velocity. In this paper we mostly concentrate on the transition zone between an effective medium and time‐average medium regimes. The width of the transition zone increases with larger values of the reflection coefficient. The transition zone corresponds to a blocking regime for which the transmission response of the layered structure is close to zero. For even higher frequencies, the time‐average medium is replaced by a new transition zone, and then again a time‐average medium. This pattern is periodically repeated with higher frequencies. For small values of the reflection coefficient, the transition between effective medium and time‐average medium occurs around a value of wavelength to layer thickness equal to 4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号