首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
地球物理   17篇
地质学   22篇
海洋学   42篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   10篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   5篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
61.
62.
Winter Distribution of Diatom Assemblages in the East China Sea   总被引:3,自引:0,他引:3  
We examined the spatial distributional relationships between diatom assemblages and water types during the winter in the East China Sea. Principal component analysis was used to identify two water types and two diatom assemblages in the study area. Coastal water types along the mainland China coastline had low temperature and salinity levels, but high nitrate levels. The shelf-mixing water type in the rest of the study area had higher temperatures and salinities and lower levels of nitrate. Diatom assemblage distribution was not spatially consistent with water type. The Kuroshio assemblage had a large standing stock, distributed along the surface of the shelf break. This assemblage is likely the result of Kuroshio surface water coming into contact with nutrient-rich water in the shelf area, triggering proliferation of certain diatom species. A background assemblage with low standing stock level persisted over the entire study area in both coastal water and the shelf-mixing water types. Our results support previous research: the background assemblage is due to poor growth conditions such as the convection of water during winter; there were no significant seasonal variations in the species composition.  相似文献   
63.
64.
Zhu  J.-F.  Zhao  H.-Y.  Jeng  D.-S. 《Acta Geotechnica》2019,14(6):1717-1739

In this study, a constitutive model is developed in order to investigate wave–seabed interactions. This model takes into account the impact of principal stress rotation (PSR) and is based on the generalized plasticity theory, in which plastic strain generated by PSR is considered an additional item in the constitutive relationship of soil. The normalized loading direction and plastic flow direction were determined based on the stress tensor invariant. Comparisons between the present model and previous Hollow Cylinder Apparatus tests and geotechnical centrifugal wave tests show good agreement. Numerical results show the effects of PSR on predictions of liquefaction potential due to: (a) the cumulative impact of plastic strain in the seafloor and (b) the buildup of pore pressure. Parametric study shows that the model parameters, including the wave and seabed parameters, have significant effects on the wave-induced soil liquefaction.

  相似文献   
65.
This paper presents an analysis of pore pressure around a caisson-type breakwater subjected to dynamic wave loading. Unlike previous investigations for wave-seabed-caisson interaction, cross-anisotropic soil behaviour is considered in this paper. Based on a linear poro-elastic theory, a finite element model is developed. A parametric study related to the effects of wave parameters, soil characteristics and geometry of caisson and rubble mound base on the pore pressure around a caisson is performed. The numerical results indicate that the effects of anisotropic soil behaviour on the wave-induced pore pressure in a sandy bed beneath a caisson are not negligible.  相似文献   
66.
Many subtropical fishes spawn multiple batches throughout a year. To understand plasticity in their reproductive output, we evaluated variation in oocyte size and batch fecundity for an exploited subtropical cutlassfish, Trichiurus japonicus, between two temperature periods (warm vs. cold) on the NE and SW coasts of Taiwan, northwestern Pacific. Given greater temperature variability on NE compared with SW coast, we hypothesized greater changes between warm and cold periods in oocyte size and fecundity for T. japonicus on the NE coast. We found opposite changes in sizes of ripe oocytes between periods (cold > warm on the NE but warm > cold on the SW coast) but consistent patterns in batch fecundity between coasts (warm > cold). Furthermore, the between-period patterns in female length were consistent on both coasts (warm > cold). The differential between-period patterns in oocyte size were related to potential adaptive responses to differential thermal environments between coasts, whereas the changes in fecundity mainly involved plastic processes (e.g., changes in population demography or movement). Together, our findings suggest that variability of temperature and maternal effects underlie recruitment variability of T. japonicus.  相似文献   
67.
M. Lin  D. S. Jeng   《Ocean Engineering》2003,30(11):1335-1352
Mechanism of wave–seabed interaction has been extensively studied by coastal geotechnical engineers in recent years. Numerous poro-elastic models have been proposed to investigate the mechanism of wave propagation on a seabed in the past. The existing poro-elastic models include drained model, consolidation model, Coulomb-damping model, and full dynamic model. However, to date, the difference between the existing models is unclear. In this paper, the fully dynamic poro-elastic model for the wave–seabed interaction will be derived first. Then, the existing models will be reduced from the proposed fully dynamic model. Based on the numerical comparisons, the applicable range of each model is also clarified for the engineering practice.  相似文献   
68.
Based on a wave bottom boundary layer model and a sediment advection-diffusion model, seven turbulence schemes are compared regarding their performances in prediction of near-bed sediment suspension beneath waves above a plane bed. These turbulence algorithms include six empirical eddy viscosity schemes and one standard two-equation k-ε model. In particular, different combinations of typical empirical formulas for the eddy viscosity profile and for the wave friction factor are examined. Numerical results are compared with four laboratory data sets, consisting of one wave boundary layer hydrodynamics experiment and three sediment suspension experiments under linear waves and the Stokes second-order waves. It is shown that predictions of near-bed sediment suspension are very sensitive to the choices of the empirical formulas in turbulence schemes. Simple empirical turbulence schemes are possible to perform equally well as the two-equation k-ε model. Among the empirical schemes, the turbulence scheme, combining the exponential formula for eddy viscosity and Swart formula for wave friction factor, is the most accurate. It maintains the simplicity and yields identically good predictions as the k-ε model does in terms of the wave-averaged sediment concentration.  相似文献   
69.
A critical review of conceptual and mathematical models developed in recent decades on sediment transport in the swash zone is presented. Numerous studies of the hydrodynamics and sediment transport in the swash zone in recent years have pointed out the importance of swash processes in terms of science advancement and practical applications. Evidently, the hydrodynamics of the swash zone are complex and not fully understood. Key hydrodynamic processes include both high-frequency bores and low-frequency infragravity motions, and are affected by wave breaking and turbulence, shear stresses and bottom friction. The prediction of sediment transport that results from these complex and interacting processes is a challenging task. Besides, sediment transport in this oscillatory environment is affected by high-order processes such as the beach groundwater flow. Most relationships between sediment transport and flow characteristics are empirical, based on laboratory experiments and/or field measurements. Analytical solutions incorporating key factors such as sediment characteristics and concentration, waves and coastal aquifer interactions are unavailable. Therefore, numerical models for wave and sediment transport are widely used by coastal engineers. This review covers mechanisms of sediment transport, important forcing factors, governing equations of wave-induced flow, groundwater interactions, empirical and numerical relations of cross-shore and longshore sediment transport in the swash zone. Major advantages and shortcomings of various numerical models and approaches are highlighted and reviewed. These will provide coastal modelers an impetus for further detailed investigations of fluid and sediment transport in the swash zone.  相似文献   
70.
An evaluation of the wave-induced pore pressures and effective stresses has been recognized by marine geotechnical engineers as an important factor in the design of marine pipelines. Most previous investigations for such a problem have considered the pipeline as a rigid material. Thus, the internal stresses within the pipeline have not been examined in the wave–seabed–pipe interaction problem. In this paper, we consider the pipeline itself to be an elastic material, and link the analysis of the pipeline with the wave–seabed interaction problem. Based on the numerical model presented, the effects of pipe geometry and variable soil characteristics on the wave-induced pore pressure and internal stresses will be discussed in detail. It is found that the internal normal stresses in the angular direction (σpθ) and shear stress (τp) within the pipe are much larger than the amplitude of wave pressure at the surface of the seabed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号