首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
测绘学   1篇
地球物理   6篇
地质学   6篇
海洋学   7篇
天文学   28篇
自然地理   1篇
  2018年   1篇
  2016年   4篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1991年   2篇
  1990年   1篇
  1982年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
We present a model for the differential rotation and dynamo activity of the young rapidly rotating K0 dwarf LQ Hya ( P rot=1.6 d). As might be expected from observations of the similar rapid rotator AB Dor, the predicted differential rotation is small (≃0.8 per cent) but extremely efficient in generating magnetic fields. The dynamo, which is of a distributed type, produces a globally axisymmetric field with radial and azimuthal components that are of the same magnitude and display a phase-lag in their evolution of about π/2. This is consistent with the long-term Zeeman–Doppler imaging study by Donati. The latitudinal distribution of flux is, however, a little different from that observed and the cycle period of 3.2 yr is somewhat shorter than suggested by the observations.  相似文献   
12.
A generalized, efficient, and practical approach based on the travel‐time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel‐time distribution from the injection point to the observation point. For advection‐dominant reactive transport with well‐mixed reactive species and a constant travel‐time distribution, the reactive BTC is obtained by integrating the solutions to advective‐reactive transport over the entire travel‐time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero‐, first‐, nth‐order, and Michaelis‐Menten reactions. The proposed approach is validated by a reactive transport case in a two‐dimensional synthetic heterogeneous aquifer and a field‐scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)‐bioremediation is better approximated by zero‐order reaction kinetics than first‐order reaction kinetics.  相似文献   
13.
We have investigated magnetostatic equilibria for coronal loops embedded in a potential magnetic field on a rotating star. We find that for any given star, there is a maximum value of the plasma pressure inside a single loop, above which no equilibrium exists. This maximum internal pressure depends on the ratio of the temperatures inside and outside the loop, and on the ratio of the plasma pressure to the magnetic pressure at the base of the external field. Thus, any loop of a large-scale field which is heated or cooled to a different temperature from its immediate surroundings, or which experiences a change in its internal pressure may eventually lose equilbrium. For some values of the base pressure and temperature ratio the relation between summit height and footpoint separation is double-valued. As the summit height of a loop is increased, its footpoint separation increases to a critical value, then decreases to zero at the maximum possible summit height. At the critical footpoint separation the slope of the loop height-footpoint separation relation becomes infinite, and no equilibrium solution exists for greater footpoint separations.We find also that the strength and scale of the field external to the flux tube is the most important factor in determining its maximum height. The effects of varying the stellar rotation rate - and, hence, the variation in pressure with height - are comparatively unimportant, even for very high rotation rates at which the point of balance between gravitational and centrifugal forces lies close to the stellar surface. In this case it is possible to find equilibrium loop solutions whose summits lie outside the centrifugal balance point.We have also investigated the effects of varying the stellar surface gravity. For stellar of fixed mass and rotation rate, the loop dimensions scale approximately linearly with the stellar radius.  相似文献   
14.
15.
We present new observations of the prominence system on the K3 dwarf Speedy Mic (BO Mic, HD 197890). Using an improved technique to track the absorption features in Hα we find a very active prominence system with approximately 10 prominences on the observable hemisphere per rotation. From a total of 25 prominences, we find an average axial distance of  (2.85 ± 0.54) R *  which is twice the corotation radius above the stellar surface. We discuss the consequences of these observations on the nature of the supporting magnetic structures. Two consecutive nights, with complete phase coverage, combined with a further night after a three-night gap allow us to study the evolution of the prominence system on two different time-scales. Several of the prominences have counterparts at similar phases on consecutive nights. During this interval, many prominences show evidence for evolution in their heights and phases of observation. Five nights (13 rotation cycles) later, we recover many prominences at approximately the same phases. Whilst individual prominences change axial distances or appear/reappear from night-to-night, the underlying prominence supporting structures appear to be stable over as many as 13 stellar rotations.  相似文献   
16.
17.
Observations of rapidly rotating solar-like stars show a significant mixture of opposite-polarity magnetic fields within their polar regions. To explain these observations, models describing the surface transport of magnetic flux demand the presence of fast meridional flows. Here, we link subsurface and surface magnetic flux transport simulations to investigate (i) the impact of meridional circulations with peak velocities of  ≤125 m s−1  on the latitudinal eruption pattern of magnetic flux tubes and (ii) the influence of the resulting butterfly diagrams on polar magnetic field properties. Prior to their eruption, magnetic flux tubes with low field strengths and initial cross-sections below  ∼300 km  experience an enhanced poleward deflection through meridional flows (assumed to be polewards at the top of the convection zone and equatorwards at the bottom). In particular, flux tubes which originate between low and intermediate latitudes within the convective overshoot region are strongly affected. This latitude-dependent poleward deflection of erupting magnetic flux renders the wings of stellar butterfly diagrams distinctively convex. The subsequent evolution of the surface magnetic field shows that the increased number of newly emerging bipoles at higher latitudes promotes the intermingling of opposite polarities of polar magnetic fields. The associated magnetic flux densities are about 20 per cent higher than in the case disregarding the pre-eruptive deflection, which eases the necessity for fast meridional flows predicted by previous investigations. In order to reproduce the observed polar field properties, the rate of the meridional circulation has to be of the order of 100 m s−1, and the latitudinal range from which magnetic flux tubes originate at the base of the convective zone (≲50°) must be larger than in the solar case (≲35°).  相似文献   
18.
We present the first measurements of surface differential rotation on a pre-main-sequence binary system. Using intensity (Stokes I) and circularly polarized (Stokes V) time-series spectra, taken over 11 nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator–pole lap times as determined from the intensity spectra are 80 d for the primary star and 163 d for the secondary. Similarly, for the magnetic spectra we obtain equator–pole lap times of 44 and 71 d, respectively, showing that the shearing time-scale of magnetic regions is approximately half of that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral-type main-sequence single stars. The results for HD 155555 are therefore in contrast to those found in other, more evolved, binary systems where negligible or weak differential rotation has been discovered. We discuss two possible explanations for this: first that at the age of HD 155555 binary tidal forces have not yet had time to suppress differential rotation and secondly that the weak differential rotation previously observed on evolved binaries is a consequence of their large convection zone depths. We suggest that the latter is the more likely solution and show that both temperature and convection zone depth (from evolutionary models) are good predictors of differential rotation strength. Finally, we also examine the possible consequences of the measured differential rotation on the interaction of binary star coronae.  相似文献   
19.
20.
Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号