首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   3篇
天文学   3篇
  2010年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1995年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
2.
Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies.  相似文献   
3.
We investigate the analytic signal method and its applicability in obtaining source locations of compact environmental magnetic objects. Previous investigations have shown that, for two-dimensional magnetic sources, the shape and location of the maxima of the amplitude of the analytic signal (AAS) are independent of the magnetization direction. In this study, we show that the shape of the AAS over magnetic dipole or sphere source is dependent on the direction of magnetization and, consequently, the maxima of the AAS are not always located directly over the dipolar sources. Maximum shift in the horizontal location is obtained for magnetic inclination of 30°. The shifts of the maxima are a function of the source-to-observation distance and they can be up to 30% of the distance. We also present a method of estimating the depths of compact magnetic objects based on the ratio of the AAS of the magnetic anomaly to the AAS of the vertical gradient of the magnetic anomaly. The estimated depths are independent of the magnetization direction. With the help of magnetic anomalies over environmental targets of buried steel drums, we show that the depths can be reliably estimated in most cases. Therefore, the analytic signal approach can be useful in estimating source locations of compact magnetic objects. However, horizontal locations of the targets derived from the maximum values of the AAS must be verified using other techniques.  相似文献   
4.
We are investigating the COBE DMR data at instances of known -ray bursts (GRBs) when any of the six DMR horn directions was coincident with the direction of a burst. The BATSE instrument on board GRO has detected 207 bursts during the eight-month period of overlap corresponding to the current release of COBE data. The odds of a GRB occurring within the DMR field of view are near one coincidence per year. Here we report on one such serendipitous observation in 1991, GRB 911226, for which a detailed analysis is currently in progress.  相似文献   
5.
Landscape evolution models provide a way to determine erosion rates and landscape stability over times scales from tens to thousands of years. The SIBERIA and CAESAR landscape evolution models both have the capability to simulate catchment–wide erosion and deposition over these time scales. They are both cellular, operate over a digital elevation model of the landscape, and represent fluvial and slope processes. However, they were initially developed to solve research questions at different time and space scales and subsequently the perspective, detail and process representation vary considerably between the models. Notably, CAESAR simulates individual events with a greater emphasis on fluvial processes whereas SIBERIA averages erosion rates across annual time scales. This paper describes how both models are applied to Tin Camp Creek, Northern Territory, Australia, where soil erosion rates have been closely monitored over the last 10 years. Results simulating 10 000 years of erosion are similar, yet also pick up subtle differences that indicate the relative strengths and weaknesses of the two models. The results from both the SIBERIA and CAESAR models compare well with independent field data determined for the site over different time scales. Representative hillslope cross‐sections are very similar between the models. Geomorphologically there was little difference between the modelled catchments after 1000 years but significant differences were revealed at longer simulation times. Importantly, both models show that they are sensitive to input parameters and that hydrology and erosion parameter derivation has long‐term implications for sediment transport prediction. Therefore selection of input parameters is critical. This study also provides a good example of how different models may be better suited to different applications or research questions. Copyright © 2010 John Wiley & Sons, Ltd and Commonwealth of Australia  相似文献   
6.
We have applied maximum entropy reconstruction methods to the IRAS observations of the nova GK Persei to examine the spatial distribution of the far-IR emission. We have discovered discrete regions of emission in a co-linear structure extending to 17 arcmin on either side of the binary system, supporting a stellar origin for the structure. We postulate that the evolved secondary is the progenitor of the circumbinary envelope.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号