首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   44篇
  国内免费   3篇
测绘学   23篇
大气科学   57篇
地球物理   160篇
地质学   254篇
海洋学   78篇
天文学   108篇
综合类   5篇
自然地理   68篇
  2024年   2篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   22篇
  2017年   18篇
  2016年   25篇
  2015年   17篇
  2014年   26篇
  2013年   44篇
  2012年   36篇
  2011年   37篇
  2010年   32篇
  2009年   44篇
  2008年   47篇
  2007年   46篇
  2006年   39篇
  2005年   26篇
  2004年   27篇
  2003年   30篇
  2002年   24篇
  2001年   19篇
  2000年   17篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   8篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   5篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   7篇
  1980年   8篇
  1979年   3篇
  1978年   3篇
  1975年   5篇
  1974年   4篇
  1973年   5篇
  1971年   5篇
  1969年   1篇
排序方式: 共有753条查询结果,搜索用时 31 毫秒
131.
The aim of this paper is to contribute to an understanding of clusters, including both the material and discursive dynamism of cluster construction, and shed light on how clusters—once established—affect the actors, institutions and processes that constitute them. It does this by viewing clusters as an actant, i.e. something that acts or to which activity is granted by others. The empirical analysis examines two clusters in the public cluster programme Norwegian Centre of Expertise (NCE): the Møre maritime cluster and the Hordaland subsea cluster. It focuses on the type of development paths they are following and how the material and discursive processes are interweaved in these paths. The clusters are related to the concept of cluster construction, which is triggered by ideas, representations, policy and industry practice. The Møre maritime cluster is characterized by bottom-up clustering processes and illustrates how the material practices of firms can trigger clustering processes such as the establishment of a cluster and the identification of a prototype of best cluster practice. On the other hand, the Hordaland subsea cluster expresses a top-down process and how the ideal world of academics and policy-making can encourage processes of clustering among co-located firms. Based on these observations of material and discursive interweaved clustering processes and how they affect both those who are practicing and those who are promoting them, we find it reasonable to argue for a stronger awareness of such feedback loops in cluster studies.  相似文献   
132.
Understanding the interactions of climate, physical erosion, chemical weathering and pedogenic processes is essential when considering the evolution of critical zone systems. Interactions among these components are particularly important to predicting how semiarid landscapes will respond to forecasted changes in precipitation and temperature under future climate change. The primary goal of this study was to understand how climate and landscape structure interact to control chemical denudation and mineral transformation across a range of semiarid ecosystems in southern Arizona. The research was conducted along the steep environmental gradient encompassed by the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO). The gradient is dominated by granitic parent materials and spans significant range in both mean annual temperature (>10 °C) and precipitation (>50 cm a?1), with concomitant shift in vegetation communities from desert scrub to mixed conifer forest. Regolith profiles were sampled from divergent and convergent landscape positions in five different ecosystems to quantify how climate-landscape position interactions control regolith development. Regolith development was quantified as depth to paralithic contact and degree of chemical weathering and mineral transformation using a combination of quantitative and semi-quantitative X-ray diffraction (XRD) analyses of bulk soils and specific particle size classes. Depth to paralithic contact was found to increase systematically with elevation for divergent positions at approximately 28 cm per 1000 m elevation, but varied inconsistently for convergent positions. The relative differences in depth between convergent and divergent landscape positions was greatest at the low and high elevation sites and is hypothesized to be a product of changes in physical erosion rates across the gradient. Quartz/Plagioclase (Q/P) ratios were used as a general proxy for bulk regolith chemical denudation. Q/P was generally higher in divergent landscape positions compared to the adjacent convergent hollows. Convergent landscape positions appear to be collecting solute-rich soil–waters from divergent positions thereby inhibiting chemical denudation. Clay mineral assemblage of the low elevation sites was dominated by smectite and partially dehydrated halloysite whereas vermiculite and kaolinite were predominant in the high elevation sites. The increased depth to paralithic contact, chemical denudation and mineral transformation are likely functions of greater water availability and increased primary productivity. Landscape position within a given ecosystem exerts strong control on chemical denudation as a result of the redistribution of water and solutes across the landscape surface. The combined data from this research demonstrates a strong interactive control of climate, landscape position and erosion on the development of soil and regolith.  相似文献   
133.
We present a synoptic overview of the Miocene-present development of the northern Alpine foreland basin (Molasse Basin), with special attention to the pattern of surface erosion and sediment discharge in the Alps. Erosion of the Molasse Basin started at the same time that the rivers originating in the Central Alps were deflected toward the Bresse Graben, which formed part of the European Cenozoic rift system. This change in the drainage direction decreased the distance to the marine base level by approximately 1,000 km, which in turn decreased the average topographic elevation in the Molasse Basin by at least 200 m. Isostatic adjustment to erosional unloading required ca. 1,000 m of erosion to account for this inferred topographic lowering. A further inference is that the resulting increase in the sediment discharge at the Miocene–Pliocene boundary reflects the recycling of Molasse units. We consider that erosion of the Molasse Basin occurred in response to a shift in the drainage direction rather than because of a change in paleoclimate. Climate left an imprint on the Alpine landscape, but presumably not before the beginning of glaciation at the Pliocene–Pleistocene boundary. Similar to the northern Alpine foreland, we do not see a strong climatic fingerprint on the pattern or rates of exhumation of the External Massifs. In particular, the initiation and acceleration of imbrication and antiformal stacking of the foreland crust can be considered solely as a response to the convergence of Adria and Europe, irrespective of erosion rates. However, the recycling of the Molasse deposits since 5 Ma and the associated reduction of the loads in the foreland could have activated basement thrusts beneath the Molasse Basin in order to restore a critical wedge. In conclusion, we see the need for a more careful consideration of both tectonic and climatic forcing on the development of the Alps and the adjacent Molasse Basin.  相似文献   
134.
135.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
136.
A numerical method is proposed to accurately and efficiently compute a direct steady-state solution of the nonlinear Richards equation. In the proposed method, the Kirchhoff integral transformation and a complementary transformation are applied to the governing equation in order to separate the nonlinear hyperbolic characteristic from the linear parabolic part. The separation allows the transformed governing equation to be applied to partially- to fully-saturated systems with arbitrary constitutive relations between primary (pressure head) and secondary variables (relative permeability). The transformed governing equation is then discretized with control volume finite difference/finite element approximations, followed by inverse transformation. The approach is compared to analytical and other numerical approaches for variably-saturated flow in 1-D and 3-D domains. The results clearly demonstrate that the approach is not only more computationally efficient but also more accurate than traditional numerical solutions. The approach is also applied to an example flow problem involving a regional-scale variably-saturated heterogeneous system, where the vadose zone is up to 1 km thick. The performance, stability, and effectiveness of the transform approach is exemplified for this complex heterogeneous example, which is typical of many problems encountered in the field. It is shown that computational performance can be enhanced by several orders of magnitude with the described integral transformation approach.  相似文献   
137.
We present a measurement of the K -band luminosity function (LF) of field galaxies obtained from near-infrared imaging of a sample of 345 galaxies selected from the Stromlo-APM Redshift Survey. The LF is reasonably well fitted over the 10-mag range −26 M K −16 by a Schechter function with parameters α =−1.16±0.19, M *=−23.58±0.42 and φ *=0.012±0.008 Mpc−3, assuming a Hubble constant of H 0=100 km s−1 Mpc−1. We have also estimated the LF for two subsets of galaxies subdivided by the equivalent width of the H α emission line at EW(H α )=10 Å. There is no significant difference in LF shape between the two samples, although there is a hint (∼1 σ significance) that emission-line galaxies (ELGs) have M * roughly 1 mag fainter than non-ELGs. Contrary to the optical LF, there is no difference in faint-end slope α between the two samples.  相似文献   
138.
The Paleoclimates from Arctic Lakes and Estuaries (PALE) project has chosen to conduct high resolution data-model comparisons for the Arctic region at 21 and 10 (calendar) ka BP. The model simulations for 21, 10, and 0 ka BP were conducted with the GENESIS 2.0 GCM. The 10 ka BP simulation was coupled to the EVE vegetation model. The primary boundary conditions differing from present at 21 ka BP were the northern hemisphere ice sheets and lower CO2, and at 10 ka BP were the orbital insolation and smaller northern hemisphere ice sheets. The purpose of this article is to discuss the hydrological consequences of these simulations.At the Last Glacial Maximum (21 ka BP) the large ice sheets over North America and Eurasia and the lower CO2 levels produced a colder climate than present, with less precipitation throughout the Arctic, except where circulation was altered by the ice sheets. At 10 ka BP greater summer insolation resulted in a warmer and wetter Beringia, but conditions remained cold and dry in the north Atlantic sector, in the vicinity of the remnant ice sheets. Less winter insolation at 10 ka BP resulted in colder and drier conditions throughout the Arctic. Precipitation - evaporation generally correlated with precipitation except where changes in the surface type (ice sheets, vegetation at 10 ka BP, or sea level at 21 ka BP) caused large changes in the evaporation rate. The primary hydrological differences (from present) at 21 and 10 ka BP correlated with the temperature differences, which were a direct result of the large-scale boundary condition changes.  相似文献   
139.
A profile across the unglaciated coast of northeast Greenland at 77°N was studied with regard to the Quaternary stratigraphy and glacial history. The Germania Land peninsula is characterised by till-covered lower ground which contrasts sharply with the blockfields and extensive gelifluction deposits of its higher altitudes. Two glaciations are distinguished. The older one extended over the entire area and had its margin on the continental shelf. The younger one, of Late Weichselian age, reached the present coastline and several mountains and high plateaus on western Germania Land formed nunataks. The Late Weichselian glaciation was more extensive and occurred later on the Germania Land peninsula than on the coast further south. Radiocarbon dates suggest that the glacier margin rested to the east of the present coastline until ca. 10 000 yr BP. This correlates with the Late Weichselian Milne Land Stage, which is found as a late glacial readvance along the coast of East Greenland. A series of recessional moraines formed during the deglaciation were probably caused by glacier dynamics, as opposed to being of climatic origin.  相似文献   
140.
Summary. Seismic travel times for extrema, zero-crossings, or entire body waves need to be determined precisely to one part in 103 or better in several varieties of seismic studies employing an impulsive artificial source. Examples are crosshole surveys which delineate rock crack distribution separating the holes and monitoring of crustal seismic travel times in earthquake precursor studies. A timing resolution of one part in 103 has been achieved previously using digitally recorded seismic data. These methods, however, do not use interpolation between digitized data points as a method to increase the timing resolution. We report travel-time determinations based on interpolation between digitized points which achieve a precision of two parts in 104, a five-fold improvement over the existing methods. In addition, the effects of seismic noise on travel-time measurement have been compared for the extremum location, the unnormalized correlation, and the normalized correlation method. The following conclusions are drawn from this comparison: (1) the normalized correlation method provides an 18–55 per cent improvement in the standard deviation of the mean over the extremum location method, and (2) results as accurate as those by the normalized correlation can be obtained by the unnormalized correlation if a complete up-and-down swing of the waveform is used as the master trace and if the master trace is close to being sinusoidal. The advantage of the unnormalized correlation over the normalized correlation is speed; the unnormalized correlation is faster by a factor of 28 in computing time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号