首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   31篇
  国内免费   7篇
测绘学   8篇
大气科学   30篇
地球物理   177篇
地质学   206篇
海洋学   23篇
天文学   115篇
综合类   2篇
自然地理   20篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   21篇
  2019年   20篇
  2018年   23篇
  2017年   34篇
  2016年   51篇
  2015年   33篇
  2014年   38篇
  2013年   42篇
  2012年   23篇
  2011年   32篇
  2010年   29篇
  2009年   37篇
  2008年   34篇
  2007年   32篇
  2006年   17篇
  2005年   17篇
  2004年   10篇
  2003年   7篇
  2002年   11篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   8篇
  1997年   5篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
81.
The effects of irregularity in elevation of cross-laminated timber buildings have not been fully analysed in literature to provide useful information for the design. In this work, a number of building configurations, regular or irregular in elevation, characterized by a different arrangement per storey of the floor–wall joints have been analysed by means of non-linear dynamic analyses. Comparative results in terms of ratio between the behaviour q-factor of the investigated irregular configurations and that of reference regular ones, show that less dissipative capacity can be expected if the building is irregular due to a disequilibrium among storeys between the actual and the required strength provided by the floor–wall joints. A correlation method to estimate the behaviour q-factor for perfectly regular cross-laminated timber buildings is here presented and extended to in-elevation irregular ones. A new empirical formulation to assess the reliable corrective factor accounting for the irregularity in elevation of cross-laminated timber buildings, according to Eurocode 8 provisions, is also proposed. A final discussion about the implications of in-elevation irregularity on the building design is reported.  相似文献   
82.
di Prisco  Claudio  Flessati  Luca  Porta  Davide 《Acta Geotechnica》2020,15(4):1013-1030

The fronts of tunnels excavated under particularly difficult ground conditions by employing conventional tunnelling methods are commonly supported: the stabilization is usually achieved either by improving the mechanical properties of the soil (injections, jet grouting, soil freezing, etc.) or by introducing linear inclusions. This last technique, consisting in the introduction of pipes (usually made of fibreglass reinforced polymers) in the front, is particularly popular since it is very simple to adapt the reinforcement geometry, length and number to the different conditions encountered during the excavation. The design of this reinforcement technique is nowadays based on very simplified approaches: on either empirical formula or the limit equilibrium method. In a previous paper, the authors numerically studied the mechanical response of unreinforced fronts in cohesive soils and defined a non-dimensional front characteristic curve. In this paper, the authors intend to take into consideration the role of reinforcements by following the same approach. A procedure allowing the definition of the reinforced non-dimensional front characteristic curve, once the reinforcement pattern is assigned, is introduced. The practical use of this curve is described.

  相似文献   
83.
This paper investigates hydrothermal fluid circulation in pre- and syn-tectonic sediments associated with detachments faults. The study area, located in the Err Nappe (SE-Switzerland), preserves a portion of the Adriatic distal margin. Two sites were studied in combining fieldwork, petrography, geochemistry and fluid inclusion analysis: the Piz Val Lunga and Fuorcla Cotschna areas. Both preserve relationships between a spectacularly exposed rift-related extensional detachment fault and its footwall and hangingwall that consist of extensional allochthons and syn- to post-tectonic sediments. These areas register a complex fluid flow history characterized by dolomitization, de-dolomitization, calcite cementation, dolomite and quartz veining and diffuse silicification. Meso- and micro-scale observations allow defining two steps in fluid evolution, which are related to Jurassic rift activity. A first carbonate-rich event occurred before the exhumation of the granitic basement, and this was followed by a second event marked by a change in the fluid towards a silica-dominated chemistry. Homogenization temperatures of fluid inclusions (average Th = 120?130 °C), negative δ18O values and a radiogenic 87Sr/86Sr signatures of carbonate minerals support the hypothesis that both the pre-tectonic rocks constituting the allochthons and the syn-tectonic sediments overlying the detachment fault were crossed by a flux of over-pressured hydrothermal fluids originating from seawater that penetrated into the basement through fault and fracture systems. Field relationships show that this fluid circulation started latest in middle Early Jurassic time, when fault activity migrated from the proximal to the future distal margin. We propose that it evolved chemically as a result of the involvement of the granitic basement forming the footwall of the extensional detachment system. Hydrothermal activity continued until the Middle/Late Jurassic, when tectonic activity shifted outwards leading to the exhumation of mantle rocks. This paper provides an original contribution to better understand the complex evolution of hyperextended continental rift domains and to constrain their thermal regimes.  相似文献   
84.
The high cost of offshore infrastructure provides continuous encouragement for optimisation of design practices. Development of a more rational method to interpret results from simple shear tests with cell pressure confinement can reduce costs and improve reliability of offshore infrastructure. This paper addresses a commonly overlooked issue affecting design parameter selection: specimen shape varies from right cylinder to oblique cylinder after loading along a single shearing direction. Thus, horizontal stresses are not always equal to the cell pressure and their magnitude varies throughout the specimen’s lateral surface. An analysis is proposed that accounts for changing specimen geometry and lateral surface area during shearing and for the actual effect of cell pressure during testing. The analysis also describes how the intermediate principal stress can be assessed. Test results for medium dense silica sand are interpreted following de Josselin de Jong’s alternative shearing mechanism hypothesis. Conventional interpretation methods yield conservative design parameters for this soil. Failure states develop when the intermediate principal effective stress is halfway between major and minor principal effective stresses. Typical results for the soil tested show equipment performance meets standard direct simple shear requirements for shear strain rate, vertical stress and specimen height control.  相似文献   
85.
86.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
87.
88.
89.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   
90.
2012 Emilia earthquake,Italy: reinforced concrete buildings response   总被引:1,自引:1,他引:0  
Data of the Italian National Institute of Statistics are collected aimed at characterizing Reinforced Concrete (RC) building stock of the area struck by the 2012 Emilia earthquake (number of storeys, age of construction, structural typology). Damage observations, collected right after the event in reconnaissance reports, are shown and analyzed emphasizing typical weaknesses of RC buildings in the area. The evolution of seismic classification for Emilia region and RC buildings’ main characteristics represent the input data for the assessment of non-structural damage of infilled RC buildings, through a simplified approach (FAST method), based on EMS-98 damage scale. Peak Ground Acceleration (PGA) capacities for the first three damage states of EMS-98 are compared with registered PGA in the epicentral area. Observed damage and damage states evaluated for the PGA of the event, in the epicentral area, are finally compared. The comparison led to a fair agreement between observed and numerical data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号