首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   8篇
  国内免费   2篇
大气科学   16篇
地球物理   31篇
地质学   59篇
海洋学   14篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   8篇
  2013年   20篇
  2012年   4篇
  2011年   6篇
  2010年   13篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1988年   1篇
排序方式: 共有135条查询结果,搜索用时 281 毫秒
31.
32.
Book reviews     
Pure and Applied Geophysics -  相似文献   
33.
The Glueckstadt Graben is one of the deepest post-Permian structures within the Central European Basin system and is located right at its “heart” at the transition from the North Sea to the Baltic Sea and from the Lower Saxony Basin to the Rynkoebing–Fyn High.The Mesozoic to recent evolution is investigated by use of selected seismic lines, seismic flattening and a 3D structural model. A major tectonic event in the latest Middle–Late Triassic (Keuper) was accompanied by strong salt tectonics within the Glueckstadt Graben. At that time, a rapid subsidence took place within the central part, which provides the “core” of the Glueckstadt Graben. The post-Triassic tectonic evolution of the area does not follow the typical scheme of thermal subsidence. In contrast, it seems that there is a slow progressive activation of salt movements triggered by the initial Triassic event. Starting with the Jurassic, the subsidence centre partitioned into two parts located adjacent to the Triassic “core.” In comparison with other areas of the Central European Basin system, the Glueckstadt Graben was not strongly affected by additional Jurassic and Cretaceous events. During the late Jurassic to Early Cretaceous, the area around the Glueckstadt Graben was affected by relative uplift with regional erosion of the elevated relief. However, subsidence was reactivated and accelerated during the Cenozoic when a strong subsidence centre developed in the North Sea. During Paleogene and Quaternary–Neogene, the two centres of sedimentation moved gradually towards the flanks of the basin.The data indeed point toward a control of post-Permian evolution by gradual withdrawal of salt triggered by the initial exhaustion along the Triassic subsidence centre. In this sense, the Glueckstadt Graben was formed at least partially as “basin scale rim syncline” during post-Permian times. The present day Hamburger, East and Westholstein Troughs are the actual final state of this long-term process which still may continue and may play a role in terms of young processes and, e.g., for coastal protection.  相似文献   
34.
The salt tectonics of the Glueckstadt Graben has been investigated in relation to major tectonic events within the basin. The lithologic features of salt sections from Rotliegend, Zechstein and Keuper show that almost pure salt is prominent in the Zechstein, dominating diapiric movements that have influenced the regional evolution of the Glueckstadt Graben. Three main phases of growth of the salt structures have been identified from the analysis of the seismic pattern. The strongest salt movements occurred at the beginning of the Keuper when the area was affected by extension. This activation of salt tectonics was followed by a Jurassic extensional event in the Pompeckj Block and Lower Saxony Basin and possibly in the Glueckstadt Graben. The Paleogene–Neogene tectonic event caused significant growth and amplification of the salt structures mainly at the margins of the basin. This event was extensional with a possible horizontal component of the tectonic movements. 3D modelling shows that the distribution of the initial thickness of the Permian salt controls the structural style of the basin, regionally. Where salt was thick, salt diapirs and walls formed and where salt was relatively thin, simple salt pillows and shallow anticlines developed.  相似文献   
35.
The Sudetes Mountains (Central Europe) were under a particularly intense long-term air pollution load during the 1970s and 1980s. Intense industrial activity in this area led to large-scale forest dieback and reductions in tree growth rates, potentially limiting the use of tree-ring data from this region in dendroclimatic research. In this paper, ring-width chronologies were constructed for 493 Norway spruce trees (Picea abies L. Karst.) from 17 sampling sites within five major mountain ranges in the Sudetes Mountains of Poland. Growth-climate response data indicate that April?July temperatures are the main factor affecting radial growth of trees in the study area. Our data also indicate the strong influence of slope aspect on temperature signal strength. The lowest correlation values were obtained for sites located on western slopes with effective fog deposition, which are strongly affected by pollution. An appropriate sampling strategy resulted in the creation of a temperature-sensitive proxy record (rAMJJ = 0.70), exceptional for areas under strong pressure from human activity. Based on a regional master chronology, growing season (April?July) temperatures over the past 200 years were then reconstructed. Four warm and four cold periods were distinguished and compared with other reconstructions and long-term instrumental data.  相似文献   
36.
Reflection seismic data were acquired within two field campaigns in the Blötberget, Ludvika mining area of central Sweden, for deep imaging of iron-oxide mineralization that were known to extend down to 800–850 m depth. The two surveys conducted in years 2015 and 2016, one employing a seismic landstreamer and geophones connected to wireless recorders, and another one using cabled geophones and wireless recorders, aimed to delineate the geometry and depth extent of the iron-oxide mineralization for when mining commences in the area. Even with minimal and conventional processing approaches, the merged datasets provide encouraging information about the depth continuation of the mineralized horizons and the geological setting of the study area. Multiple sets of strong reflections represent a possible continuation of the known deposits that extend approximately 300 m further down-dip than the known 850 m depth obtained from historical drilling. They show excellent correlation in shape and strength with those of the Blötberget deposits. Furthermore, several reflections in the footwall of the known mineralization can potentially be additional resources underlying the known ones. The results from these seismic surveys are encouraging for mineral exploration purposes given the good quality of the final section and fast seismic surveys employing a simple cost-effective and easily available impact-type seismic source.  相似文献   
37.
38.
39.

Based on a series of experiments conducted by two regional climate models (RCA4 and LMDZ) with and without soil moisture-atmosphere coupling, we investigate the role of soil moisture on the occurrence of surface air temperature extremes and its persistence in Southeastern South America. Our analysis reveals that both factors, soil moisture-atmosphere coupling and relatively drier soil conditions, enhance the temperature extremes. In addition, the existence of soil-atmosphere coupling and the associated soil moisture variability is crucial for the development of the extremes in SESA. The key role of soil-atmosphere coupling is also reflected in the intrinsic persistence of hot days, which is greater in simulations with interactive soil moisture than in those with prescribed soil conditions. In the absence of soil-atmosphere coupling, the imprint of the anomalous dry (and also wet) soil conditions on the intensity and persistence of hot days is weaker.

  相似文献   
40.
The Attic–Cycladic Crystalline Belt in the central Aegean region represents a major tectono‐stratigraphic unit of the Hellenides. The essential geological, magmatic and tectono‐metamorphic features are well documented. Unresolved questions concern the time of sediment accumulation and litho‐ and/or tectono‐stratigraphic relationships across the study area. In order to address this issue we have studied siliciclastic metasedimentary rocks from Andros Island, northern Cyclades. The sampling strategy aimed at covering the complete age range recorded by the Andros metamorphic succession. Detrital zircon U–Pb dating of nine samples indicates maximum depositional ages of c. 260 Ma for the topmost part of the metamorphic succession and of c. 160–140 Ma for rock sequences below a prominent serpentinite belt that is interpreted to outline a major tectonic contact. These age constraints are in accordance with interpretations suggesting that the metamorphic rocks of Andros represent different tectonic subunits (Makrotantalon Unit and Lower Unit) that are separated by a thrust fault. Modification of the internal structure of the Lower Unit by tectonic stacking can currently not be ascertained. The new data for the Lower Unit corroborate the importance of Late Jurassic–Early Cretaceous sediment accumulation for the larger study area. In contrast to some of the neighbouring islands, no evidence for transfer of Late Cretaceous (c. 80 Ma) material into the Andros sedimentary environment was found. The most striking feature of the zircon populations of the Lower Unit is a remarkable age cluster at 250–200 Ma that documents the importance of Triassic igneous sediment sources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号