首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   7篇
  国内免费   2篇
测绘学   1篇
大气科学   6篇
地球物理   39篇
地质学   34篇
海洋学   32篇
天文学   20篇
自然地理   1篇
  2021年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   10篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   4篇
  2006年   11篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
41.
Basalt in the Furutobe District of the Kuroko mine area in Japan is characterized by abundant chlorite and epidote. Fluid inclusion studies indicate that chlorite is formed at lower temperatures (230–250°C) than epidote (250–280°C). The seawater/basalt mass ratio for the early chlorite-rich alteration was high (max. 40), but that for the later alteration was low (0.1–1.8). The CaO, Na2O and SiO2 of the bulk rock correlate negatively with MgO, while FeO and Σ Fe correlate positively with MgO. These changes in the characteristic features of hydrothermal alteration from early to late are generally similar to those for a mid-ocean ridge geothermal system accompanying basalt alteration.The MgO/FeO ratios of chlorite and actinolite and the Fe2O3 concentration of epidote from the basalt are greater than those of mid-ocean ridge basalt probably owing to the differences in the Fe2O3/FeO and MgO/FeO ratios of the parent rocks. The lower CaO concentration and the higher Na2O concentration of the bulk rock compared with altered mid-ocean ridge basalt can be interpreted in terms of the difference in original bulk rock compositions.The Furutobe basalt, as well as other submarine back arc basalts, contains more vesicles filled with hydrothermal minerals (epidote, calcite, quartz, chlorite, pyrite) than do the mid-ocean ridge basalts. The abundance of vesicles plays an important role in controlling the secondary mineralogy and geochemistry of hydrothermally altered submarine back arc basin basalts.  相似文献   
42.
Heavily shocked meteorites contain various types of high‐pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high‐pressure minerals are micron to submicron sized and occur within and in the vicinity of shock‐induced melt veins and melt pockets in chondrites and lunar, howardite–eucrite–diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid‐state high‐pressure transformation of the host‐rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to ~25 GPa. Textural, crystallographic, and chemical characteristics of high‐pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high‐pressure minerals in shocked meteorites that have been reported over the past 50 years.  相似文献   
43.
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin.  相似文献   
44.
The vertical structure of the Soya Warm Current (SWC) was observed by a bottom-mounted acoustic Doppler current profiler (ADCP) in the region of the SWC axis near the Soya Strait during a 1-year period from May 2004. The ADCP data revealed a marked seasonal variability in the vertical structure, with positive (negative) vertical shear in summer and fall (winter and spring). The volume transport of the SWC is estimated on the basis of both the vertical structure observed by the ADCP and horizontal structure observed by the ocean radars near the strait. The transport estimates have a minimum in winter and a maximum in fall, with the yearly-averaged values in the range of 0.94–1.04 Sv (1 Sv = 106 m3 s−1). These lie within a reasonable range in comparison to those through other straits in the Japan Sea.  相似文献   
45.
The differential velocity field in cool stars can be measured effectively on photographic plates by the use of a PDS micro-densitometer, from which it is shown that radial velocity gradients are larger for stars with larger turbulent velocities, which are determined from the high resolution echellograms. This indicates that the stellar turbulence may have something to do with the differential velocity field in stellar atmospheres. As an observational probe of the mixing processes in red giant stars, stellar abundances that are sensitive to mixing are determined on the basis of high resolution Fourier Transform spectroscopy. For example, the12C/13C ratio has now been determined for large number of red giant stars and shows characteristic changes through the first red giant branch to the asymptotic giant branch, including both the pre-thermal pulsing and the thermal pulsing phases. This information, together with additional information on the16O/17O ratio and on CNO abundances, provides useful constraints on the theory of mixing in red giant stars.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September-6 October, 1984.  相似文献   
46.
Takeshi  Tsuji  Yasuyuki  Nakamura  Hidekazu  Tokuyama  Millard F.  Coffin  Keita  Koda 《Island Arc》2007,16(3):361-373
Abstract   To show the structure of oceanic crust and Moho around the eastern Ogasawara Plateau, we have analyzed industry-standard two-dimensional multichannel seismic reflection data. To obtain improved velocity models, phase information of seismic signals was used for velocity analysis and velocity models for oceanic crust above Moho were determined. We apply this velocity analysis technique to seismic reflection data around the eastern Ogasawara Plateau, with the result of clear images of structures within oceanic crust and Moho. South of the Ogasawara Plateau, Moho deepens proximal to the Plateau. Moho distal to the Plateau is ca 7 km below sea floor (bsf), whereas it is ca 10 km bsf near the Plateau. The characters of oceanic crust and Moho differ significantly north and south of the Plateau. To the north, the structure of oceanic crust is ambiguous, the sea floor is shallower and less smooth, and Moho is discontinuous. To the south, structures within oceanic crust and Moho are imaged clearly, and the sea floor is deeper. A strong Moho reflection south of the Plateau might represent a sharp boundary between layered gabbro and peridotite. However, discontinuous Moho reflections north of the Plateau might represent rough topography because of intensive magmatism or a gradual downward increase in velocity within a thick Moho transition zone. A fracture zone north of the Plateau also appears to separate oceanic crust and Moho of different characters, suggesting vigorous magmatism between the Plateau and the fracture zone, and that the Ogasawara Plateau and the fracture zone influenced the genesis of oceanic crust and upper mantle. Differences in acoustic characteristics to the north and south of the Plateau are apparent in profiles illuminated by seismic attributes.  相似文献   
47.
48.
Abstract Miyanohara tonalite occurs in the middle part of the Higo metamorphic belt in the central Kyushu, Southwest Japan. This tonalite intrudes into early Permian Ryuhozan metamorphic rocks in the south and is intruded by Cretaceous Shiraishino granodiorite in the north. The Miyanohara tonalite yielded three mineral ages: (i) 110–100 Ma for Sm–Nd and Rb–Sr internal isochrons and for K–Ar hornblende; (ii) 183 Ma for Sm–Nd internal isochron; and (iii) 211 Ma for Sm–Nd internal isochron. The ages of 110–100 Ma may indicate cooling age due to the thermal effect of the Shiraishino granodiorite intrusion. The ages of 183 Ma and 211 Ma are consistent with timing of intrusion of the Miyanohara tonalite based on geologic constraints. The hornblende in the sample which gave 183 Ma shows discontinuous zoning under microscope, whereas the one which gave 211 Ma does not show zonal structure. These mineralogical features suggest that the 183 Ma sample has suffered severely from later tectonothermal effect compared with the 211 Ma sample. Therefore, the age of 211 Ma is regarded as near crystallization age for the Miyanohara tonalite. The magmatic process, geochronology and initial Sr and Nd isotope ratios for the Miyanohara tonalite are similar to those of early Jurassic granites from the Outer Plutonic Zone of the Hida belt that constitutes a marginal part of east Asia before the opening of the Japan Sea. Intrusion of the Miyanohara tonalite is considered to have taken place in the active continental margin during the late Triassic.  相似文献   
49.
In this article, the authors summarize 20 years of scholarship and two field projects on geoarchaeology in Nara, Japan, carried out by researchers from 12 different institutions in 4 countries. The research goal was to test an aerial photographic reconstruction of surface landforms in the Nara Basin with subsurface data. Project A was conducted at Asawa; it tested, through geological coring, whether a suspected swampy backmarsh in the eastern basin existed and whether it would yield data on the transition to wet rice agriculture in the mid‐1st millennium B.C. Project B was conducted at Miwa; it tested, through geological coring and subsequent excavation, the nature of upland agricultural terrace formation in the southeastern basin and whether the suspected existence of a 4th‐century palace site could be confirmed. Two layers of carbonaceous clay at Asawa were dated to the Early (˜5000–3500 B.C.) and Final (˜1000‐300 B.C.) phases of the Jomon period. Pollen data revealed the establishment of an evergreen oak forest from 5,000 years ago and anthropogenic changes in forest cover from 2,000 years ago. Phytoliths from rice, millets, reeds, and bamboo were recovered in layers postdating the Final Jomon carbonaceous clay. A fault scarp with anthropogenic modification of the terraces was identified at Miwa. It was discovered that an incised stream valley had been infilled in the Medieval period at the same time surface layers were razed; the front of the terrace was extended in the premodern period. Remains were recovered from the Middle Yayoi (˜100 B.C.–A.D. 100) and the Medieval (˜A.D. 1185–1603) periods. However, as the terracing involved razing the early historic levels, no data were recovered on the alleged 4th‐century palace site. The significance of these findings lies in the identification of (a) a swampy backmarsh at Asawa, where initial agricultural efforts in growing wet rice in the basin may have occurred, confirming the aerial photographic reconstruction; and (b) hillside terracing activities at Miwa, from the Medieval period onwards, which have radically changed the configuration of the natural topography. © 2005 Wiley Periodicals, Inc.  相似文献   
50.
A conglomerate appears on a rocky coast called ??Tsubutega-ura Coast??, located on the southwestern coast near the southern tip of the Chita Peninsula, Aichi Prefecture, central Japan. The conglomerate belongs to Miocene sedimentary rocks termed the Morozaki Group. The conglomerate includes meter-scale boulders, indicating that it was formed by an extraordinary event. In the geological investigation, we observed that the conglomerate shows alternate changes of paleocurrent directions between seaward and landward. This feature is supposed to be formed by tsunami currents. In the hydrodynamical investigation, we obtained following results: (1) the lowest limit of a current velocity to move a boulder of about 3?m in diameter would be about 2?C3?m/s, (2) the speed of tsunami currents reproduced by tsunami simulation exceeds 3?m/s at 300?m in depth when the tsunami is generated by a gigantic earthquake with magnitude 9.0 or more, (3) the transport distance of the boulder would be several hundred?meters to several kilometers by one tsunami event caused by a gigantic earthquake. We conclude that tsunamis best explain the formation of the conglomerate deposited in upper bathyal environments about 200?C400?m depth, both from geological and hydrodynamical viewpoints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号