首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   4篇
  国内免费   4篇
测绘学   8篇
大气科学   25篇
地球物理   53篇
地质学   135篇
海洋学   9篇
天文学   25篇
综合类   1篇
自然地理   13篇
  2022年   9篇
  2021年   10篇
  2020年   4篇
  2019年   3篇
  2018年   17篇
  2017年   13篇
  2016年   14篇
  2015年   13篇
  2014年   16篇
  2013年   22篇
  2012年   20篇
  2011年   12篇
  2010年   12篇
  2009年   8篇
  2008年   12篇
  2007年   14篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   7篇
  2002年   1篇
  2001年   5篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1972年   2篇
排序方式: 共有269条查询结果,搜索用时 31 毫秒
211.
Unsteady laminar free convection flow of a viscous incompressible and electrically conducting fluid past an accelerated vertical infinite porous plate subjected to a suction velocity proportional to (time)–1/2 is studied in presence of a uniform horizontal magnetic field. Results are discussed with the effects of the Grashof number Gr, and the magnetic field parameterM for Pr (the Prandtl number)=0.71 and 7.0 representing air and water respectively at 20 °C.Nomenclature a suction/injection parameter - C p specific heat at constant pressure - B 0 magnetic induction - g acceleration due to gravity - Gr Grashof number (vg(T'w-T')/U 0 3 ) - K thermal conductivity - M magnetic field parameter (B 0 2 e 2 /U 0 2 ) - Pr Prandtl number (C p/K) - T' temperature of the fluid near the plate - T' w temperature of the plate - T' temperature of the fluid at infinity - t' time variable - t dimensionless time (t' U 0 2 /v) - u non-dimensional velocity (u'/U 0) - U' velocity of the plate - U dimensionless velocity of the plate (U'/U o) - U 0 reference velocity - v' 0 suction velocity - v 0 nondimensional suction velocity (v' 0/U 0)=at–1/2 - v' normal velocity component - v dimensionless normal velocity - Ec Eckert number ((vU 0)2/3/C p(T' w -T' )) - T dimensionless temperature of the fluid near the plate ((T'-T' )/T' w –T' )) - x',y' coordinates along and normal to the plate - y dimensionless ordinate (=y' U o/v) - v kinematic viscosity - coefficient of volume expansion - electric conductivity of the fluid - similarity variable (y/2t) - w density of the fluid at the plate - density of the fluid at infinity - ' skin-friction - dimensionless skin-friction - coefficient of viscosity - e magnetic permeability  相似文献   
212.
213.
We studied the variations in spatial and temporal clustering of earthquake activity (during 2001–2013) in the Kachchh seismic zone, Gujarat, India, by precisely relocating 3478 events using a joint hypocentral determination (JHD) relocation technique, and high-quality arrival times of 21032 P- and 20870 S-waves. Temporal disposition of estimated station corrections of P- and S-waves suggests that the fluid flow in the causative fault zone of the 2001 Bhuj mainshock increased during 2001–2010, while it reduced during 2011–2013, due to the healing process associated with the perturbed Kachchh fault zone. We also estimated the isotropic seismic diffusivities from epicentral growth patterns, which are found to be much lower than those observed for reservoir-induced seismicity sites in the world. Finally, we analysed the spatial and temporal evolution of this earthquake sequence by solving the diffusion equation of pore-pressure relaxation caused by co- and post-seismic stress changes associated with earthquakes. The value of the isotropic diffusivity is estimated to be 100 m2/s for the Kachchh rift zone. This gives a higher permeability (after a lapse time of 14 years from the occurrence of the 2001 Bhuj mainshock) in comparison to those observed for other intraplate regions in the world. Our results suggest that the observed spatio-temporal migration of seismicity is consistent with the shallow (meteoric water circulation at 0–10 km depths) and deeper (metamorphic fluid and volatile CO2 circulation at 10–40 km depths) fluid flows in the permeable and fractured causative fault zone of the 2001 Bhuj earthquake.  相似文献   
214.
A Frequency-dependent Relation of Coda Qc for Koyna-Warna Region, India   总被引:1,自引:0,他引:1  
—Attenuation properties of the lithosphere around the Koyna-Warna seismic zone is studied by estimating the coda-Q c from 30 local earthquakes of magnitude varying from 1.5 to 3.8. An average lapse time of 65 sec used in the single scattering model sampled a circular area with an average radius of 114 km. The estimated Q c values show a frequency-dependent relation, Q c =169 f?0.77, and range from 169 at 1 Hz to 1565 at 18 Hz. A comparison of worldwide Q studies reveals that for a large frequency range the Q for active regions is low as compared to that for stable regions. However, South Carolina and Norway are exceptions in that their Q is low in the low frequency range while New England and North Iberia are exceptions as they have a Q value similar to that for active regions like Spain, Turkey, Italy and Garhwal Himalaya (STIH), in the higher frequency range. In contrast to this, the Q for the Koyna-Warna area, which belongs to a stable region, is low in the entire frequency range as compared to the stable regions and similar to the active STIH regions.  相似文献   
215.
Wave and wind characteristics based on the cyclones, in the vicinity of the Nagapattinam coastline (east coast of India) were estimated. In all, 11 cyclones have crossed near the study region during 1960–1996. For the four severe cyclones, the isobaric charts were collected at three hourly intervals from the India Meteorological Department. The storm variables such as central pressure, radius of maximum wind, speed of forward motion and direction of storm movement were extracted and the method based on standard Hydromet pressure profile, were used for the hindcast of storm wind fields. For all the cyclones the maximum significant wave height within the storm and its associated spectral peak period was estimated using the Young’s model considering the moving wind field and the results are compared with the hurricane wave prediction techniques provided in the shore protection manual published by the US Army Corps of Engineers in 1984. The study shows that the estimated wind speed and the data reported by ships were comparable. Empirical expressions relating wind speed, wave height and wave period to storm parameters were derived. The design wave height for different return periods was obtained by fitting a two-parameter Weibull distribution to the estimated significant wave heights. The design wave height was 9.39 m for 1 in 100 year return period for a direct hit of cyclone.  相似文献   
216.
The problem of oblique wave scattering by a submerged thin vertical wall with a gap in finite-depth water and its modification when another identical wall is introduced, are investigated in this paper. The techniques of both one-term and multiterm Galerkin approximations have been utilized in the mathematical analysis. The multi-term approximations in terms of appropriate Chebyshev polynomials provide extremely accurate numerical estimates for the reflection coefficient. The reflection coefficient is depicted graphically for a number of geometries. It is found that by the introduction of another identical wall, there occurs zero reflection for certain wave numbers. This may have some bearings on the modelling of a breakwater.  相似文献   
217.
The impact of different land-surface parameterisation schemes for the simulation of monsoon circulation during a normal monsoon year over India has been analysed. For this purpose, three land-surface parameterisation schemes, the NoaH, the Multi-layer soil model and the Pleim-Xiu were tested using the latest version of the regional model (MM5) of the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) over the Indian summer monsoon region. With respect to different land-surface parameterisation schemes, latent and sensible heat fluxes and rainfall were estimated over the Indian region. The sensitivity of some monsoon features, such as Somali jet, tropical easterly jet and mean sea level pressure, is discussed. Although some features of the Indian summer monsoon, such as wind and mean sea level pressure, were fairly well-simulated by all three schemes, many differences were seen in the simulation of the typical characteristics of the Indian summer monsoon. It was noticed from the results that the features of the Indian summer monsoon, such as strength of the low-level westerly jet, the cross-equatorial flow and the tropical easterly jet were better simulated by NoaH compared with verification analysis than other land-surface schemes. It was also observed that the distribution of precipitation over India during the peak period of monsoon (July) was better represented with the use of the NoaH scheme than by other schemes.
U. C. MohantyEmail:
  相似文献   
218.

Slopes in geotechnical and mining engineering are the most crucial geo-structure. Predicting or forecasting the stability or instability of the slope and then classifying the slope accordingly helps in mitigating the risks and enhancing the design by maximizing the safety. Computing techniques have overpowered the analytical and statistical models used for predicting the stability of the slopes. To reduce the uncertainties and ambiguity of the previously used models, lately, researchers have come up with the novel techniques for Slope Stability Classification (SSC) which are Random Forest, Gradient Boosting Machine, Extreme Gradient Boosting, Boosted Trees and Classification and Regression Trees. These computational algorithms are employed in this research paper and the slope details are taken from a literature i.e. 221 input datasets are used and slopes are classified accordingly using the mentioned models. The relation between the inputs such as height (H), slope angle (β), cohesion (c), pore water pressure ratio (ru), unit weight (γ), angle of internal friction (φ) and slope stability (output) is established and slopes are categorized according to their failure and stability. Performance analysis is done thereafter to analyses and compare different models and let the readers and researchers know that which model sufficed and fitted best to the study.

  相似文献   
219.
The Kachchh rift zone of the northwestern India lies near to the India-Arabia and the India-Eurasia plate boundaries, which has experienced many devastating earthquakes in the past, namely the 1819 Allah Bund earthquake, the 1956 Anjar earthquake and the 2001 Bhuj earthquake. These earthquakes claimed the lives of about 17,000 people. To understand the current seismo-tectonic scenario, moment tensor inversion on the broadband data of fourteen Kachchh events of Mw 3.5–4.6 (during 2009–2015) from 5–12 three-component seismograph stations of the National Geophysical Research Institute (NGRI), Hyderabad, India was applied. Here deviatoric moment tensor inversion of multiple point sources (10–20s) for regional (or local) earthquakes, developed by Zahradnik et al. (2005) was used. The study reveals that modeled focal mechanisms range between reverse and normal oblique strikeslip while no pure normal dip-slip mechanism is found. However, only four out of fourteen events show oblique normal faulting with a minor strike-slip component. Thus, the modeling proposed in this study suggests that the oblique-reverse strike-slip, reverse and strike-slip type focal mechanisms are found to be dominant in the Kachchh rift zone. This observation indicates that the region is presently under compression.  相似文献   
220.
The rock mass around an excavation is generally traversed by different geological discontinuities such as faults, folds, slips, joints, etc. Fault is one of the major geological discontinuities which creates lot of difficulties during underground winning of coal. Entire stress regime and ground conditions in the formation are altered in and around the faults. Faults also impose detrimental effects by introducing impurities, including clay and various forms of mineral matter into the coal seams; opening of pathways for the influx of water and gas into the underground workings; displacing the coal seams upward/downwards making the coal seams difficult or sometimes impractical to mine. Appropriate evaluation of the effect of the fault on the stability of the underground workings is a requisite for safe design of the underground mining structures. In this paper, a study has been carried out to assess the effect of the fault on the stability of underground coal mines by numerical simulation with distinct element method (DEM). On the calibrated DEM model, parametric study has been performed by varying the selected parameters, the dip and the friction angles of the fault. The analysis of variance (ANOVA) shows that both the factors have statistically significant effect on the strength of the coal pillar. Similarly, the displacement of the immediate roof and the height of the disturbed strata are evaluated by the DEM modelling and statistical analysis when the fault passes through the middle of the gallery. The results of ANOVA for both cases indicate that the both factors have significant effect on the displacement of the immediate roof and the height of the disturbed strata. It is obtained from the study that the low angle fault causes high instability in the immediate roof. The paper has been supplemented with the field observations where instability in underground roadways of a coal mine in India is caused by the fault. It was observed in VK-7 incline mine of Singareni Collieries Company Limited, India that there was sudden failure of immediate roof of a roadway where a low angle fault crosses the middle of the roadway. The findings of the paper help to understand the behaviour of the coal pillar and the surrounding rock mass in the presence of the fault. The study would also help to take appropriate decisions about the unstable regions of the working safeguarding safety in underground coal mines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号