首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   10篇
  国内免费   8篇
测绘学   31篇
大气科学   33篇
地球物理   67篇
地质学   125篇
海洋学   33篇
天文学   49篇
综合类   4篇
自然地理   28篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   3篇
  2018年   12篇
  2017年   18篇
  2016年   21篇
  2015年   11篇
  2014年   20篇
  2013年   29篇
  2012年   16篇
  2011年   9篇
  2010年   3篇
  2009年   9篇
  2008年   13篇
  2007年   15篇
  2006年   12篇
  2005年   12篇
  2004年   12篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   12篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1978年   3篇
  1973年   4篇
  1971年   2篇
  1969年   5篇
  1967年   2篇
  1965年   1篇
  1964年   2篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
61.
Coastal inundation associated with extreme sea levels is the main factor which leads to the loss of life and property whenever a severe tropical cyclonic storm hits the Indian coasts. The Andhra and Orissa coasts are most vulnerable for coastal inundation due to extreme rise in sea levels associated with tropical cyclones. Loss of life may be minimized if extreme sea levels and associated coastal flooding is predicted well in advance. Keeping this in view, location specific coastal inundation models are developed and applied for the Andhra and Orissa coasts of India. Several numerical experiments are carried out using the data of past severe cyclones that struck these regions. The simulated inland inundation distances are found to be in general agreement with the reported flooding.  相似文献   
62.
The circulation and salinity distribution in the Hooghly Estuary have been studied by developing a two‐dimensional depth‐averaged numerical model for the lower estuary, where the flow is vertically well mixed. This has been coupled with a one‐dimensional model for the upper estuary, where the flow is assumed to be unidirectional and well mixed over the depth and breadth. The Hooghly River receives high freshwater discharge during the monsoon season (June to September), which has significant effect on the salinity distribution in the estuary. The model‐simulated currents, elevations, and salinities are in good agreement with observations during the dry season. However, during the wet season the computed salinities seem to deviate slightly from the observed values.  相似文献   
63.
Uttarakhand state in India is well known for its mountainous ecosystems,traditional communities and a variety of ecotourism destinations.Among various tourism activities,River Rafting along the banks of the Ganges River has increased tremendously for two decades,and has had unprecedented impacts on the traditional communities and the bio-diversity.Therefore,it is meaningful to do a comprehensive study on the various impacts associated with river rafting so as to suggest the pathways to achieve the environmental sustainability in this region.In this study,we collected primary data from randomly selected population units across all stake holders such as local people(n = 100),and camp personnel(n = 22),through a pre-tested questionnaire survey between August 2009 and May 2010.The questionnaire contains issues on culture,social,economic,institutional and associated perceived impacts on pollution and biodiversity including views for sustainability.Secondary information was also collected from various sources and government records to supplement and strengthen the analysis.The impacts were analyzed qualitatively through a ranking mechanism to facilitate the decision making process.The perception of the interviewee about the various possible impacts of rafting was discussed with mitigating mechanism.The ranking analysis as percollected data reveals that economy and education of local community was improved significantly;however aquatic and terrestrial fauna,social cohesion and pollution(water,air,land) were significantly deteriorated.The results show that the existing practices are not sufficient to address the adverse impacts.Improvement in practices is necessary,mainly in the policy regime.Based on the analysis,some measures are recommended on how to protect community interest and environment with the development of river rafting as an ecotourism opportunity.  相似文献   
64.
ABSTRACT

The U.S. Geological Survey (USGS) National Geospatial Program (NGP) seeks to i) create semantically accessible terrain features from the pixel-based 3D Elevation Program (3DEP) data, and ii) enhance the usability of the USGS Geographic Names Information System (GNIS) by associating boundaries with GNIS features whose spatial representation is currently limited to 2D point locations. Geographic object-based image analysis (GEOBIA) was determined to be a promising method to approach both goals. An existing GEOBIA workflow was modified and the resulting segmented objects and terrain categories tested for a strategically chosen physiographic province in the mid-western US, the Ozark Plateaus. The chi-squared test of independence confirmed that there is significant overall spatial association between terrain categories of the GEOBIA and GNIS feature classes. Contingency table analysis also suggests strong category-specific associations between select GNIS and GEOBIA classes. However, 3D visual analysis revealed that GEOBIA objects resembled segmented regions more than they did individual landform objects, with their boundaries often failing to correspond to match what people would likely perceive as landforms. Still, objects derived through GEOBIA can provide initial baseline landscape divisions that can improve the efficiency of more specialized feature extraction methods.  相似文献   
65.
Scheelite and Powellite occur as dissemination and fractures filling in the hornfels and tourmaline-garnet granite in the Palaeoproterozoic rocks of Mahakoshal Group, at about 2.5 km north of Wyndhamganj, Sonbhadra district, Uttar Pradesh. This new find opens new vistas for the search of tungsten mineralization along the contact zones of Mahakoshal Group and the younger granite.  相似文献   
66.
The impact of mining causes deterioration of environment and decline of groundwater level in the adjoining mining areas, which influences groundwater source for domestic and agriculture purposes. This necessitated locating and exploiting of new groundwater source. A fast, cost-effective and economical way of locating and exploration is to study and analyze remote sensing data. Interpreted remote sensing data were used to select sites for carrying out surface geophysical investigations. Various geomorphologic units were demarcated, and the lineaments were identified by interpretation of false color composite satellite imageries. The potential for occurrence of groundwater in the Sukinda Valley was classified as very good, good, moderate and poor by interpreting the images. Sub-surface geophysical investigations, namely vertical electrical soundings, were carried out to delineate and demarcate potential water-bearing zones. Integrated studies of interpretation of geomorphologic, lineaments and geophysical data (aquifer thickness) were used to prepare groundwater potential map. The studies reveal that the groundwater potential of shallow aquifers is due to geomorphologic features, and the potential of deeper aquifers is determined by lineaments and degree of weathering.  相似文献   
67.
The hydrogeochemical study of groundwater in Dumka and Jamtara districts has been carried out to assess the major ion chemistry, hydrogeochemical processes and groundwater quality for domestic and irrigation uses. Thirty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, anions (F?, Cl?, NO3 ?, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). The analytical results show the faintly alkaline nature of water and dominance of Mg2+ and Ca2+ in cationic and HCO3 ? and Cl? in anionic abundance. The concentrations of alkaline earth metals (Ca2+?+?Mg2+) exceed the alkali metals (Na+?+?K+) and HCO3 ? dominates over SO4 2??+?Cl? concentrations in the majority of the groundwater samples. Ca?CMg?CHCO3 is the dominant hydrogeochemical facies in 60?% of the groundwater samples, while 33?% samples occur as a mixed chemical character of Ca?CMg?CCl hydrogeochemical facies. The water chemistry is largely controlled by rock weathering and ion exchange processes with secondary contribution from anthropogenic sources. The inter-elemental correlations and factor and cluster analysis of hydro-geochemical database suggest combined influence of carbonate and silicate weathering on solute acquisition processes. For quality assessment, analyzed parameter values were compared with Indian and WHO water quality standards. In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. Total hardness and concentrations of TDS, Cl?, NO3 ? , Ca2+ and Mg2+ exceed the desirable limits at a few sites, however, except NO3 ? all these values were below the highest permissible limits. The calculated parameters such as sodium adsorption ratio, percent sodium (%Na) and residual sodium carbonate revealed excellent to good quality of groundwater for agricultural purposes, except at few sites where salinity and magnesium hazard (MH) values exceeds the prescribed limits and demands special management.  相似文献   
68.
The Indus flood in 2010 was one of the greatest river disasters in recent history, which affected more than 14 million people in Pakistan. Although excessive rainfall between July and September 2010 has been cited as the major causative factor for this disaster, the human interventions in the river system over the years made this disaster a catastrophe. Geomorphic analysis suggests that the Indus River has had a very dynamic regime in the past. However, the river has now been constrained by embankments on both sides, and several barrages have been constructed along the river. As a result, the river has been aggrading rapidly during the last few decades due to its exceptionally high sediment load particularly in reaches upstream of the barrages. This in turn has caused significant increase in cross-valley gradient leading to breaches upstream of the barrages and inundation of large areas. Our flow accumulation analysis using SRTM data not only supports this interpretation but also points out that there are several reaches along the Indus River, which are still vulnerable to such breaches and flooding. Even though the Indus flood in 2010 was characterized by exceptionally high discharges, our experience in working on Himalayan rivers and similar recent events in rivers in Nepal and India suggest that such events can occur at relatively low discharges. It is therefore of utmost importance to identify such areas and plan mitigation measures as soon as possible. We emphasize the role of geomorphology in flood analysis and management and urge the river managers to take urgent steps to incorporate the geomorphic understanding of Himalayan rivers in river management plans.  相似文献   
69.
In the western part of Bundelkhand massif, a caldera with intra-caldera sediments, known as Dhala Formation, occurs as an outlier in and around Mohar village of Shivpuri district, Madhya Pradesh. For the first time, occurrence of peperite is being reported from the basal part of the Dhala sediment. Two types of peperites have been recognized: blocky and fluidal or globular with variable morphology. In peperitic zones, features like soft sediment deformations, presence of sediment into the rhyolite along cracks, vesiculation of the sediments and other evidences suggestive of sediment fluidization are some definite characteristics of interaction of hot magma with wet sediments forming peperite. The occurrence of peperites reflects the contemporaniety of deposition of the Dhala sediments and volcanism, which is well in accordance to the volcanic origin of Dhala structure. Further, the nature of unconformity between the Dhala and overlying Kaimur which is characterized by merely a few centimeter thick pebbly/conglomeratic bed does not appear to represent a large hiatus as expected between the Semri and Kaimur of Vindhyan Supergroup. So, the contemporaniety of the Dhala Formation (at least the lower part) as reflected by occurrence of peperites, coupled with the available age of the rhyolite and the nature of the unconformity between the Dhala and overlying Kaimur provide convincing evidence to correlate the Dhala Formation with the Lower part of the Kaimur and unlikely with the Semri Group or Bijawar as proposed earlier.  相似文献   
70.
Proxy reconstructions of precipitation from central India, north-central China, and southern Vietnam reveal a series of monsoon droughts during the mid 14th–15th centuries that each lasted for several years to decades. These monsoon megadroughts have no analog during the instrumental period. They occurred in the context of widespread thermal and hydrologic climate anomalies marking the onset of the Little Ice Age (LIA) and appear to have played a major role in shaping significant regional societal changes at that time. New tree ring-width based reconstructions of monsoon variability suggest episodic and widespread reoccurrences of monsoon megadroughts continued throughout the LIA. Although the El-Niño Southern Oscillation (ENSO) plays an important role in monsoon variability, there is no conclusive evidence to suggest that these megadroughts were associated with anomalous sea surface temperature anomalies that were solely the result of ENSO-like variability in the tropical Pacific. Instead, the causative mechanisms of these megadroughts may reside in protracted changes in the synoptic-scale monsoon climatology of the Indian Ocean. Today, the intra-seasonal monsoon variability is dominated by ‘active’ and the ‘break’ spells – two distinct oscillatory modes of monsoon that have radically different synoptic scale circulation and precipitation patterns. We suggest that protracted locking of the monsoon into the “break-dominated” mode – a mode that favors reduced precipitation over the Indian sub-continent and SE Asia and enhanced precipitation over the equatorial Indian Ocean, may have caused these exceptional droughts. Impetus for periodic locking of the monsoon into this mode may have been provided by cooler temperatures at the extratropical latitudes in the Northern Hemisphere which forced the mean position of the Inter-Tropical Convergence Zone (ITCZ) further southward in the Indian Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号