首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   26篇
地质学   22篇
海洋学   13篇
天文学   10篇
自然地理   3篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   5篇
  1995年   1篇
  1993年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
11.
12.
大地震在哪里发生是地震预报首先要解决的问题.利用反演GNSS观测数据得到的2011年日本东北9级大地震前7年(2004-2010年)断层上的应力变化,我们发现了这次地震断层的孕震区.为了进一步研究该孕震区的演化过程,本文继续反演这次大地震在1997-2003年间的断层应力变化过程.通过这两期的反演工作,我们看到,在这1...  相似文献   
13.
14.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   
15.
—We investigated the effects of various viscoelastic structures on postseismic surface displacement and principal strain fields associated with the great 1946 Nankaido earthquake, which occurred on the plate boundary between the subducting Philippine Sea plate and the continental Eurasian plate. For this purpose, we constructed two kinds of three-dimensional structural models using the finite element method one is the Layered Model, in which a semi-infinite Maxwell viscoelastic material is underlying an elastic layer, and the other is the more realistic Plate Model, in which the three-dimensional configuration of the subducted Philippine Sea plate is taken into account. We also considered two cases with different thicknesses of the elastic layer (50 and 33km) for the respective models. The difference between the two models in postseismic surface deformations is significant for the case with the thinner elastic layer. In this case the horizontal surface displacement and principal strain for the Layered Model is two to three times larger than those for the Plate Model. Downward surface deformation tends to be dominant for the Layered Model, while the change in the pattern for the Plate Model is less marked. The spatial extent of uplift and subsidence for the Plate Model is broader than that for the Layered Model. Postseismic vertical displacements in Shikoku were found to be strongly dependent on the viscoelastic structures. From these results, we suggest that the estimates of the viscosity of the uppermost mantle, interplate coupling, and the area and the amount of after-slip following the 1946 Nankaido earthquake, which have been estimated based on simple layered viscoelastic models, should be re-evaluated using realistic three-dimensionally heterogeneous viscoelastic structures.  相似文献   
16.
In the Cleaverville area of Western Australia, the Regal, Dixon Island, and Cleaverville Formations preserve a Mesoarchean lower‐greenschist‐facies volcano‐sedimentary succession in the coastal Pilbara Terrane. These formations are distributed in a rhomboidal‐shaped area and are unconformably overlain by two narrowly distributed shallow‐marine sedimentary sequences: the Sixty‐Six Hill and Forty‐Four Hill Members of the Lizard Hills Formation. The former member is preserved within the core of the Cleaverville Syncline and the latter formed along the northeast‐trending Eighty‐Seven Fault. Based on the metamorphic grade and structures, two deformation events are recognized: D1 resulted in folding caused by a collisional event, and D2 resulted in regional sinistral strike‐slip deformation. A previous study reported that the Cleaverville Formation was deposited at 3020 Ma, after the Prinsep Orogeny (3070–3050 Ma). Our SHRIMP U–Pb zircon ages show that: (i) graded volcaniclastic–felsic tuff within the black shale sequence below the banded iron formation in the Cleaverville Formation yields an age of (3 114 ±14) Ma; (ii) the youngest zircons in sandstones of the Sixty‐Six Hill Member, which unconformably overlies pillow basalt of the Regal Formation, yield ages of 3090–3060 Ma; and (iii) zircons in sandstones of the Forty‐Four Hill Member show two age peaks at 3270 Ma and 3020 Ma. In this way, the Cleaverville Formation was deposited at 3114–3060 Ma and was deformed at 3070–3050 Ma (D1). Depositional age of the Cleaverville Formation is at least 40–90 Myr older than that proposed in previous studies and pre‐dates the Prinsep Orogeny (3070–3050 Ma). After 3020 Ma, D2 resulted in the formation of a regional strike‐slip pull‐apart basin in the Cleaverville area. The lower‐greenschist‐facies volcano‐sedimentary rocks are distributed only within this basin structure. This strike‐slip deformation was synchronous with crustal‐scale sinistral shear deformation (3000–2930 Ma) in the Pilbara region.  相似文献   
17.
Hysteretic dampers are used to dissipate earthquake‐induced energy in base‐isolated structures by acquiring inelastic deformations, rendering their hysteretic behavior of vital importance. The present paper focuses on investigating the behavior of U‐shaped steel dampers under bidirectional loading; this is significantly different from their corresponding uniaxial behavior. Two main sets of loading tests on full‐scale specimens are conducted in this regard: (i) quasi‐static tests with simple histories and (ii) dynamic tests with realistic loading histories. Based on the results obtained in the quasi‐static tests, an interaction curve that accounts for the reduction of the cyclic deformation capacity is proposed. However, the fidelity of this relation must be assessed under loading conditions similar to those of a seismically isolated structure subjected to an earthquake, which represents the goal of the second set of tests. The results of the dynamic tests validate the proposed interaction curve for estimating the deformation capacity of U‐shaped steel dampers under bidirectional loading. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
18.
Applying segment-wise altimetry-based gravest empirical mode method to expendable bathythermograph temperature, Argo salinity, and altimetric sea surface height data in March, June, and November from San Francisco to near Japan (30° N, 145° E) via Honolulu, we estimated the component of the heat transport variation caused by change in the southward interior geostrophic flow of the North Pacific subtropical gyre in the top 700 m layer during 1993–2012. The volume transport-weighted temperature (TI) is strongly dependent on the season. The anomaly of TI from the mean seasonal variation, whose standard deviation is 0.14°C, was revealed to be caused mainly by change in the volume transport in a potential density layer of 25.0?25.5σ??. The anomaly of TI was observed to vary on a decadal or shorter, i.e., quasi-decadal (QD), timescale. The QD-scale variation of TI had peaks in 1998 and 2007, equivalent to the reduction in the net heat transport by 6 and 10 TW, respectively, approximately 1 year before those of sea surface temperature (SST) in the warm pool region, east of the Philippines. This suggests that variation in TI affects the warm pool SST through modification of the heat balance owing to the entrainment of southward transported water into the mixed layer.  相似文献   
19.
The Fukuoka District Meteorological Observatory recently logged three possible deep low-frequency earthquakes (LFEs) beneath eastern Kyushu, Japan, a region in which LFEs and low-frequency tremors have never before been identified. To assess these data, we analyzed band-pass filtered velocity seismograms and relocated LFEs and regular earthquakes using the double-difference method. The results strongly suggest that the three events were authentic LFEs, each at a depth of about 50 km. We also performed relocation analysis on LFEs recorded beneath the Kii Peninsula and found that these LFEs occurred near the northwest-dipping plate interface at depths of approximately 29–38 km. These results indicate that LFEs in southwest Japan occur near the upper surface of the subducting Philippine Sea (PHS) plate. To investigate the origin of regional differences in the occurrence frequency of LFEs in western Shikoku, the Kii Peninsula, and eastern Kyushu, we calculated temperature distributions associated with PHS plate subduction. Then, using the calculated thermal structures and a phase diagram of water dehydration for oceanic basalt, the water dehydration rate (wt.%/km), which was newly defined in this study, was determined to be 0.19, 0.12, and 0.08 in western Shikoku, the Kii Peninsula, and eastern Kyushu, respectively; that is, the region beneath eastern Kyushu has the lowest water dehydration rate value. Considering that the Kyushu–Palau Ridge that is subducting beneath eastern Kyushu is composed of tonalite, which is low in hydrous minerals, this finding suggests that the regionality may be related to the amount of water dehydration associated with subduction of the PHS plate and/or differences in LFE depths. Notable dehydration reactions take place beneath western Shikoku and the Kii Peninsula, where the depth ranges for dehydration estimated by thermal modeling agree well with those for the relocated LFEs. The temperature range in which LFEs occur in these regions is estimated to be 400–500 °C.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号