首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   17篇
  国内免费   7篇
测绘学   7篇
大气科学   42篇
地球物理   90篇
地质学   121篇
海洋学   141篇
天文学   78篇
综合类   6篇
自然地理   19篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   10篇
  2017年   20篇
  2016年   24篇
  2015年   10篇
  2014年   20篇
  2013年   25篇
  2012年   11篇
  2011年   21篇
  2010年   15篇
  2009年   25篇
  2008年   22篇
  2007年   28篇
  2006年   23篇
  2005年   26篇
  2004年   27篇
  2003年   18篇
  2002年   13篇
  2001年   12篇
  2000年   15篇
  1999年   14篇
  1998年   15篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   11篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有504条查询结果,搜索用时 189 毫秒
71.
Myanmar is tenth among the world’s fish-producing countries and third in ASEAN (Association of Southeast Asian Nations). To understand the mechanisms underlying the high production, oceanographic and phytoplankton surveys, including primary productivity measurements based on pulse amplitude modulation fluorometry, were conducted near an active fishing ground near Myeik City. Three surveys, one in each of the representative seasons and covering the characteristic coastal environments, showed well-defined seasonality in primary production and phytoplankton occurrence. End of the dry season was the most productive, with productivity of 2.59 ± 1.56 g C m?2 day?1 and high concentration of chlorophyll a (3.14 ± 2.64 µg L?1). In this season, the phytoplankton population was dominated by high densities of the diatoms Bellerochea horologicalis and Chaetoceros curvisetus, whereas primary productivity was low at the onset of the dry season, 1.36 ± 0.77 g C m?2 day?1. However, this low primary production might be compensated by activation of microbial food chains originating from high dissolved organic carbon. The rainy season exhibited the lowest production, 6.6% of the end of the dry season, due to the extensive discharge of turbid water from the rivers which lowered euphotic layer depth and resulted in an unusually high diffuse attenuation coefficient of 2.30 ± 1.03 m?1. This incident of turbid water may be related to soil erosion from deforestation and mangrove deterioration. This research reveals the seasonal trend in Myanmar’s coastal productivity and its relationship to the tropical monsoon climate as well as emphasizing the importance of tropical coastal environments to the sustainability of the fisheries.  相似文献   
72.
The Benjamin River apatite prospect in northern New Brunswick, Canada, is hosted by the Late Silurian Dickie Brook plutonic complex, which is made up of intrusive units represented by monzogranite, diorite and gabbro. The IOA ores, composed mainly of apatite, augite, and magnetite at Benjamin River form pegmatitic pods and lenses in the host igneous rocks, the largest of which is 100 m long and 10–20 m wide in the diorite and gabbro units. In this study, 28 IOA ore and rock samples were collected from the diorite and gabbro units. Mineralogical observations show that the apatite–augite–magnetite ores are variable in the amounts of apatite, augite, and magnetite and are associated with minor amounts of epidote‐group minerals (allanite, REE‐rich epidote and epidte) and trace amounts of albite, titanite, ilmenite, titanomagnetite, pyrite, chlorite, calcite, and quartz. Apatite and augite grains contain small anhydrite inclusions. This suggests that the magma that crystallized apatite and augite had high oxygen fugacity. In back scattered electron (BSE) images, apatite grains in the ores have two zones of different appearance: (i) primary REE‐rich zone; and (ii) porous REE‐poor zone. The porous REE‐poor zones mainly appear in rims and/or inside of the apatite grains, in addition to the presence of apatite grains which totally consist of a porous REE‐poor apatite. This porous REE‐poor apatite is characterized by low REE (<0.84 wt%), Si (<0.28 wt%), and Cl (<0.17 wt%) contents. Epidote‐group minerals mainly occur in grain boundary between the porous REE‐poor apatite and augite. These indicate that REE leached from primary REE‐rich apatite crystallized as allanite and REE‐rich epidote. Magnetite in the ores often occurs as veinlets that cut apatite grains or as anhedral grains that replace a part of augite. These textures suggest that magnetite crystallized in the late stage. Pyrite veins occur in the ores, including a large amount of quartz and calcite veins. Pyrite veins mainly occur with quartz veins in augite. These textures indicate pyrite veins are the latest phase. Apatite–augite–magnetite ore, gabbro–quartz diorite and feldspar dike collected from the Benjamin River prospect contain dirty pure albite (Ab98Or2–Ab100) under the microscope. The feldspar dikes mainly consist of dirty pure albite. Occurrences of the dirty pure albite suggest remarkable albitization (sodic alteration) of original plagioclase (An25.3–An60 in Pilote et al., 2012) associating with intrusion of monzogranite into gabbro and diorite. SO42? bearing magma crystallized primary REE‐rich apatite, augite and anhydrite reacted with Fe in the sodic fluids, which result in oxidation of Fe2+ and release of S2? into the sodic fluids. REE, Ca and Fe from primary REE‐rich apatite, augite and plagioclase altered by the sodic fluids were released into the fluids. Then Fe3+ in the sodic fluids precipitated as Fe oxides and epidote‐group minerals in apatite–augite–magnetite ores. Finally, residual S2? in sodic fluids crystallized as latest pyrite veins. In conclusion, mineralization in Benjamin River IOA prospect are divided into four stages: (1) oxidized magmatic stage that crystallized apatite, augite and anhydrite; (2) sodic metasomatic stage accompanying alteration of magmatic minerals; (3) oxidized fluid stage (magnetite–epidote group minerals mineralization); and (4) reduced fluid stage (pyrite mineralization).  相似文献   
73.
For the past 10 years or so, a number of so-called multiscale methods have been developed as an alternative approach to upscaling and to accelerate reservoir simulation. The key idea of all these methods is to construct a set of prolongation operators that map between unknowns associated with cells in a fine grid holding the petrophysical properties of the geological reservoir model and unknowns on a coarser grid used for dynamic simulation. The prolongation operators are computed numerically by solving localized flow problems, much in the same way as for flow-based upscaling methods, and can be used to construct a reduced coarse-scale system of flow equations that describe the macro-scale displacement driven by global forces. Unlike effective parameters, the multiscale basis functions have subscale resolution, which ensures that fine-scale heterogeneity is correctly accounted for in a systematic manner. Among all multiscale formulations discussed in the literature, the multiscale restriction-smoothed basis (MsRSB) method has proved to be particularly promising. This method has been implemented in a commercially available simulator and has three main advantages. First, the input grid and its coarse partition can have general polyhedral geometry and unstructured topology. Secondly, MsRSB is accurate and robust when used as an approximate solver and converges relatively fast when used as an iterative fine-scale solver. Finally, the method is formulated on top of a cell-centered, conservative, finite-volume method and is applicable to any flow model for which one can isolate a pressure equation. We discuss numerical challenges posed by contemporary geomodels and report a number of validation cases showing that the MsRSB method is an efficient, robust, and versatile method for simulating complex models of real reservoirs.  相似文献   
74.
The displacement of a relatively small reactivated landslide in a snowy area in Japan was monitored over a long period. The displacement rate of the landslide, which was approximately of 20 mm d?1 before the formation of snow cover, decelerated drastically during the continuous snow cover period every winter period. Possible causes included reduction in the amount of water that reached the ground surface (MR: meltwater and/or rainwater) and increase in snow load. Given that the actual displacement of the landslide was far below the predicted value based on the relationship between landslide displacement and MR immediately before the continuous snow cover period, the deceleration of landslide displacement was more likely attributable to the increase in snow load than to the reduction in MR. An investigation of the link between snow load and landslide displacement showed a negative logarithmic relationship. A dynamic analysis based on the limit equilibrium method showed that snow load increases the effective normal stress and the stability of a landslide in which the mean inclination angle of the slip surface is smaller than the internal friction angle. The stability of the actual slope was also analyzed by conducting soil tests on samples collected at the site and using the resultant parameters. The analysis also showed that the increase in snow load increases the safety factor and reduces the landslide displacement. The displacement of a relatively small landslide that has a shallow slip surface was found to be greatly influenced by snow cover.  相似文献   
75.
Ground-penetrating radar (GPR) has become an important geophysical tool which can provide a wealth of interpretive information about the vertical profile of discontinuous permafrost. A GPR investigation was conducted in October 2006 at the Nalaikh site at the southern boundary of the Siberian discontinuous permafrost region in Mongolia. GPR data were collected along four 100-m-long profiles to identify the location of the permafrost body, which included an in situ drilling borehole and analysis of temperature observations and soil water content measurements from boreholes. The GPR interpretation results indicated that the thickness of discontinuous permafrost at the study site was only 1.9–3.0 m and the permafrost is vulnerable to climate change. The soil temperature and soil water content data demonstrate the precision of GPR image interpretation. This case demonstrated that GPR is well suited for mapping the internal structure of discontinuous permafrost with relatively low soil water content.  相似文献   
76.
Vesicomyid bivalves have a substantial biomass in deep-sea chemosynthetic biological communities in the Pacific. Using a novel multiplex-PCR (mPCR) method to identify the co-occurring vesicomyids in Sagami Bay, we analyzed the distribution of Calyptogena okutanii and Calyptogena soyoae along environmental gradients. All the known distributions of C. okutanii indicated the different preferences in salinity and temperature to those of C. soyoae, and in Sagami Bay, depth seemed to be an important environmental factor, too. Although the concentration of hydrogen sulfide in sediment was not examined, our results showed that the distributions of these two Calyptogena clams were affected by salinity and temperature.  相似文献   
77.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   
78.
We studied the contributions of plagioclase, clinopyroxene, and amphibole to the P‐wave velocity properties of gabbroic mylonites of the Godzilla Megamullion (site KH07‐02‐D18) in the Parece Vela Rift of the central Parece Vela Basin, Philippine Sea, based on their crystal‐preferred orientations (CPOs), mineral modes, and elastic constants and densities of single crystals. The gabbroic mylonites have been classified into three types based on their microstructures and temperature conditions: HT1, HT2 and medium‐temperature (MT) mylonites. The P‐wave velocity properties of the HT1 mylonite are dominantly influenced by plagioclase CPOs. Secondary amphibole occurred after deformation in the HT1 mylonite, so that its effect on P‐wave velocity anisotropy is minimal due to weak CPOs. Although the HT2 mylonite developed deformation microstructures in the three minerals, the P‐wave velocity properties of the HT2 mylonite are essentially isotropic, resulting from the destructive interference of different P‐wave velocity anisotropy patterns produced by the distinct CPOs of the three constituent minerals (i.e., plagioclase, clinopyroxene, and amphibole). The P‐wave velocity properties of the MT mylonite are influenced mainly by amphibole CPOs, whereas the effect of plagioclase CPOs on P‐wave velocity anisotropy becomes very small with a decrease in the intensity of plagioclase CPOs. As a result, the gabbroic mylonites tend to have weak P‐wave velocity anisotropy in seismic velocity, although their constituent minerals show distinct CPOs. Such weakness in the whole‐rock P‐wave velocity anisotropy could result from the destructive contributions of the different mineral CPOs with respect to the structural framework (foliation and lineation). These results show that amphibole has a high potential for P‐wave velocity anisotropy by aligning both crystallographically and dimensionally during deformation in the hydrous oceanic crust. The results also suggest that the effect of a hydrous phase on P‐wave velocity anisotropy within the detachment shear zone in a slow‐spreading oceanic crust varies depending on the degree of deformation and on the timing of hydrothermal activity.  相似文献   
79.
An estimated 3.5 ± 0.7 × 1015 Bq of 137Cs is thought to have been discharged into the ocean following the melt down at Fukushima Dai-ichi Nuclear Power Plant (F1NPP). While efforts have been made to monitor seafloor radiation levels, the sampling techniques used cannot capture the continuous distribution of radionuclides. In this work, we apply in situ measurement techniques using a towed gamma ray spectrometer to map the continuous distribution of 137Cs on the seafloor within 20 km of the F1NPP. The results reveal the existence of local 137Cs anomalies, with levels of 137Cs an order of magnitude higher than the surrounding seafloors. The sizes of the anomalies mapped in this work range from a few meters to a few hundreds of meters in length, and it is demonstrated that the distribution of these anomalies is strongly influenced by meter scale features of the terrain.  相似文献   
80.
Various image processing techniques were experimented with in this study to evaluate their efficiency for geological mapping in the Eljufra area of northwest Libya. Remote sensing data including multi-spectral optical Landsat Enhanced Thematic Mapper (ETM+), Synthetic Aperture Radar (ERS-2 SAR) and Digital Elevation Models (DEMs) extracted from the Shuttle Radar Topography Mission (SRTM) data were used to trace different lithological units as well as extracting geological lineaments in the study area. The study area is located in an arid environment mostly devoid of any vegetation. Most lithological and structural units are distinguishable based on their topographic form and spectral properties. Fusion of ETM+ and ERS-2 images was experimented with to further identify lithological units. Shaded relief techniques were implemented to enhance terrain perspective views and to extract geological lineaments. The results discriminated different rock units and modified formation boundaries and revealed new geological lineaments. Nine rock units were identified and plotted in the new geological map defined by the new boundaries. The dominant lineaments tend to run in the NNW-SSE and NNE-SSW directions. Analysis and interpretation of the lineaments provided information about the tectonic evolution of the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号