首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   27篇
  国内免费   10篇
测绘学   18篇
大气科学   46篇
地球物理   132篇
地质学   211篇
海洋学   54篇
天文学   29篇
综合类   4篇
自然地理   33篇
  2024年   1篇
  2023年   7篇
  2022年   12篇
  2021年   32篇
  2020年   28篇
  2019年   27篇
  2018年   32篇
  2017年   27篇
  2016年   29篇
  2015年   12篇
  2014年   28篇
  2013年   46篇
  2012年   30篇
  2011年   30篇
  2010年   13篇
  2009年   23篇
  2008年   19篇
  2007年   17篇
  2006年   12篇
  2005年   8篇
  2004年   14篇
  2003年   10篇
  2002年   9篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1987年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有527条查询结果,搜索用时 31 毫秒
51.
Fine-resolution regional climate simulations of tropical cyclones (TCs) are performed over the eastern Australian region. The horizontal resolution (30 km) is fine enough that a good climatological simulation of observed tropical cyclone formation is obtained using the observed tropical cyclone lower wind speed threshold (17 m s–1). This simulation is performed without the insertion of artificial vortices (bogussing). The simulated occurrence of cyclones, measured in numbers of days of cyclone activity, is slightly greater than observed. While the model-simulated distribution of central pressures resembles that observed, simulated wind speeds are generally rather lower, due to weaker than observed pressure gradients close to the centres of the simulated storms. Simulations of the effect of climate change are performed. Under enhanced greenhouse conditions, simulated numbers of TCs do not change very much compared with those simulated for the current climate, nor do regions of occurrence. There is a 56% increase in the number of simulated storms with maximum winds greater than 30 m s–1 (alternatively, a 26% increase in the number of storms with central pressures less than 970 hPa). In addition, there is an increase in the number of intense storms simulated south of 30°S. This increase in simulated maximum storm intensity is consistent with previous studies of the impact of climate change on tropical cyclone wind speeds.  相似文献   
52.
Black carbon decomposition under varying water regimes   总被引:1,自引:0,他引:1  
The stability of biomass-derived black carbon (BC) or biochar as a slow cycling pool in the global C cycle is an important property and is likely governed by environmental conditions. This study investigated the effects of water regimes (saturated, unsaturated and alternating saturated–unsaturated conditions) and differences in BC materials, produced by carbonizing corn residues and oak wood at two temperatures (350 °C and 600 °C) on BC degradation at 30 °C over 1 year in a full factorial experiment. Effects of water regime on C loss and potential cation exchange capacity (CECp at pH 7) significantly depended on biomass type. Corn BC was both mineralized (16% C loss for the first year) and was oxidized [1000 mmole(+) kg?1 C] significantly faster under unsaturated conditions than under other water regimes, whereas oak BC mineralized most rapidly (12%) under alternating saturated–unsaturated conditions with similar oxidation, irrespective of water regime. Over 1 year of saturated incubation, the O/C ratio values did not significantly (P > 0.05) increase even though BC was mineralized by 9% and CECp increased by 170 mmole(+) kg?1 C, in contrast to unsaturated and alternating saturated–unsaturated conditions. While mineralization and oxidation significantly decreased at higher charring temperature for corn, no difference was observed for oak (P > 0.05). Unsaturated and alternating conditions increased carboxylic and OH functional groups, while they decreased aliphatic groups. The pH increased by about one unit for corn BC, but decreased by 0.2 units for oak BC, indicating strong mineral dissolution of corn BC. Carbon loss strongly correlated with changes in O/C values of both corn BC and oak BC, indicating that oxidation of BC was most likely the major mechanism controlling its stability. However, under saturated conditions, additional mechanisms may govern BC degradation and require further investigation.  相似文献   
53.
Geomagnetism and Aeronomy - Homogeneous series of solar cosmic-ray events for four solar-activity cycles against the background of decreased activity in cycles 23 and 24 are considered. The number...  相似文献   
54.
The hydrogeomorphology of the Vietnamese Mekong Delta (VMD) has been significantly altered by natural and anthropogenic drivers. In this study, the spatiotemporal changes of the flow regime were examined by analysing the long-term daily, monthly, annual and extreme discharges and water levels from 1980 to 2018, supported by further investigation of the long-term annual sediment load (from the 1960s to 2015), river bathymetric data (in 1998, 2014 and 2017) and daily salinity concentration (from the 1990s to 2015) using various statistical methods and a coupled numerical model. Then, the effects of riverbed incision on the hydrology were investigated. The results show that the dry season discharge (i.e., in March–June) of the Tien River increased by up to 23% from the predam period (1980–1992) to the postdam period (1993–2018) but that the dry season water level at My Thuan decreased by up to −46%. The annual mean and monthly water levels in June at Tan Chau and in January and June–October at My Thuan in the Tien River decreased statistically, even though the respective discharges increased significantly. These decreased water levels instead of the increased discharges were attributed to the accelerated riverbed incision upstream from My Thuan, which increased by more than three times, from a mean rate of −0.16 m/year (−16.7 Mm3/year) in 1998–2014 to −0.5 m/year (−52.5 Mm3/year) in 2014–2017. This accelerated riverbed incision was likely caused by the reduction in the sediment load of the VMD (from 166.7 Mt/year in the predam period to 57.6 Mt/year in the postdam period) and increase in sand mining (from 3.9 Mm3 in 2012 to 13.43 Mm3 in 2018). Collectively, the decreased dry season water level in the Tien River is likely one of the main causes of the enhanced salinity intrusion.  相似文献   
55.
A new portable in situ flume(PISF)for measuring critical bed shear stress(CBSS)was developed in this study.The PISF consists of an open bottom sediment erosion chamber and an electrically-driven pump.Unlike most existing in situ flumes with similar designs,the new PISF does not rely on monitoring the flow conditions or particle density in the sediment erosion chamber;instead,it is a pre-calibrated flume.The calibration was performed by first determining CBSS of various selected sediment samples of known particle size and density(using the law of the wall),based on flow velocity-depth profiles measured in a 6 m straight open-channel flume using a Particle Image Velocimetry(PIV)system.These same particles of known CBSS were then used in the new in-situ flume under controlled lab conditions to obtain a series of calibration curves of CBSS vs.pump electrical power.A wide variety of particle types and sizes(simulated sediments)were used in this two-step calibration procedure to widen CBSS measurement range and simulate cohesive force effects.The size of the PISF is much smaller and more practical than other similar devices as lamellar flow conditions are not required and it can be applied to a wide range of sediment types including cohesive sediments.  相似文献   
56.
Acta Geochimica - In this study, we investigated the chemical composition of dissolved solids in the Ca River basin, North-Central Vietnam. Water samples were collected from August 2017 to July...  相似文献   
57.
Shakirov  R. B.  Cuong  Do Huy  Obzhirov  A. I.  Valitov  M. G.  Lee  N. S.  Legkodimov  A. A.  Kalgin  V. Yu.  Yeskova  A. I.  Proshkina  Z. N.  Telegin  Yu. A.  Storozhenko  A. V.  Ivanov  M. V.  Pletnev  S. P.  Sedin  V. T.  Bulanov  A.V.  Shvalov  D. A.  Lipinskaya  N. A.  Bovsun  M. A.  Makseev  D. S.  Thanh  Nguyen Trung  Anh  Le Duc  Luong  Le Duc 《Oceanology》2021,61(1):147-149
Oceanology - Abstract—The paper gives brief results of comprehensive studies in the South China Sea obtained from a joint Russian–Vietnamese expedition in November 2019 (cruise 88 of...  相似文献   
58.
Izvestiya, Atmospheric and Oceanic Physics - In recent years, rapid urbanization and population growth have led to an overload of waste in big cities of Vietnam. Waste decomposition is always...  相似文献   
59.
To the north of Hanoi, about a day's drive by car, lies Ha Giang Province, the northernmost region of Vietnam. Ha Giang is remote from the hustle and bustle of daily life, and beyond its eponymous provincial capital towards the border with China, mountains rise quickly to Quan Ba, ‘Heaven's Gate’. The mountains form an uneven landscape of steep‐sided karst rising from deep river‐cut gorges and form a formidable barrier on the northern frontier of Vietnam. Beyond ‘Heaven's Gate’ lies the little travelled region of Dong Van, with its majestic mountains of Palaeozoic strata rising precipitously to the sky. Here, a century ago, the French geologists Henri Mansuy and Jacques Deprat documented early finds of fossils from lower Palaeozoic strata on the border with China.  相似文献   
60.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号