首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   9篇
大气科学   5篇
地球物理   30篇
地质学   39篇
海洋学   17篇
天文学   5篇
综合类   1篇
自然地理   2篇
  2021年   13篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1993年   1篇
  1980年   2篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
51.
A sedimentological, biostratigraphical and geochemical (stable isotopes and Rock‐Eval parameters) analysis was performed on four Swiss successions, in order to examine the expression of the Toarcian Oceanic Anoxic Event along a north–south transect, from the Jura through the Alpine Tethys (Sub‐Briançonnais and Lombardian basins). The locations were selected to represent a range of palaeoceanographic positions from an epicontinental sea to a more open marine setting. The Toarcian Oceanic Anoxic Event was recognized by the presence of the characteristic negative carbon‐isotope excursion in carbonate (ca 2 to 4‰) and organic matter (ca 4 to 5‰) at the base of the falciferum ammonite Zone (NJT6 nannofossil Zone). The sedimentary expression of the Toarcian Oceanic Anoxic Event varies along the transect from laminated mudstone rich in total organic carbon (≤11 wt.%) in the Jura, to thin‐bedded marl (≤5 wt.% total organic carbon) in the Sub‐Briançonnais Basin and to hemipelagic reddish marly limestone (total organic carbon <0·05 wt.%) in equivalent levels from the Lombardian Basin. The carbon‐isotope excursion is thus independent of facies and palaeoceanographic position. The low nannofossil abundance and the peak in Calyculaceae in the Jura and the Sub‐Briançonnais Basin indicate low salinity surface waters and stratified water masses in general. Sedimentological observations (for example, obliquely‐bedded laminae and homogeneous mud layers containing rip‐up clasts) indicate the presence of dynamic conditions, suggesting that water mass stratification was episodically disrupted during the Toarcian Oceanic Anoxic Event. The proposed correlation highlights a stratigraphic gap and/or condensed interval between the Pliensbachian–Toarcian boundary and the Toarcian Oceanic Anoxic Event interval (most of the tenuicostatum ammonite Zone is missing), which is also observed in coeval European sections and points to the influence of sea‐level change and current dynamics. This transect shows that the sedimentary expression of the Toarcian Oceanic Anoxic Event is not uniform across the Alpine Tethys, supporting the importance of local conditions in determining how this event is recorded across different palaeoceanographic settings.  相似文献   
52.
A previous contribution from our laboratory reported the formation of hydrogen peroxide (H2O2) upon addition of pyrite (FeS2) to O2-free water. It was hypothesized that a reaction between adsorbed H2O and Fe(III), at a sulfur-deficient defect site, on the pyrite surface generates an adsorbed hydroxyl radical (OH).
  相似文献   
53.
A thin film of marcasite, FeS2, was synthesized under vacuum and its structure and reactivity under oxidizing conditions was investigated by means of diffraction and surface analytical techniques, respectively. Synthesis of the film was carried out by codepositing Fe and S2 onto a Ta support. The thickness of the film could be varied from approximately 10 Å to 1 μm. High-resolution S 2p synchrotron-based photoemission showed S22−, with undetectable amounts of S2− impurity that is typically present on natural sample surfaces. X-ray diffraction of the micron-thick films showed that the film crystallized in the marcasite phase of FeS2. Atomic force microscopy indicated that the thin film had a nanometer-scale roughness suggesting the film contained defects such as steps and kinks. X-ray photoelectron spectroscopy studies found the thin marcasite film to be more reactive than natural pyrite (the most ubiquitous FeS2 dimorph) after exposure to a gaseous O2/H2O environment on the basis of the amount of sulfate formation. Likely the oxidation of marcasite was dominated by its short-range order (e.g., presence of steps), because the density of nonstoichiometric defect sites (e.g., S2−) was low as assessed by photoelectron spectroscopy.  相似文献   
54.
Six C2M chondrites (Boriskino, Cold Bokkeveld, Erakot, Essebi, Haripura and Santa Cruz) and the C2R chondrite Al Rais were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Sn, Te, Tl, U, and Zn. Abundances (relative to Cl chondrites) show a systematic dependence on volatility, apparently reflecting volatile loss during formation of chondrules and other high-T components. Elements of nebular condensation temperature (Tc) > 1200 K are undepleted, those of Tc < 700 K are depleted by a constant factor (0.482 ± 0.049 for C2M's) and elements of intermediate volatility are depleted by intermediate factors. The abundances do not “tend to fall monotonically as a function of [Tc],” as previously claimed by Wai and Wasson (1977) for a more restricted temperature range. For meteorites that have suffered little aqueous alteration (Mighei, Murchison, Murray), the mean abundance of volatiles agrees with the matrix content, but for the more altered meteorites, matrix contents are 20–30% higher. Only a few meteorites deviate appreciably from the mean abundance pattern. Al Rais, a C2R chondrite with a significant metal content, is systematically lower in 12 volatiles, but is enriched in Ni and Pd. Haripura and Erakot are enriched in Bi and Tl, possibly from the late condensate, mysterite.  相似文献   
55.
This study assessed the nutritive value of the most important forage species of the Calden forest (central semi-arid La Pampa, Argentina), for samples collected in fall, winter and spring, under grazing conditions and during two successive years, for ranges of good and fair conditions. The crude protein concentration (CP) of short-winter grasses (Piptochaetium napostaense, Poa ligularis, Stipa clarazii and Hordeum stenostachys) was about 10%. Mid-winter grasses (S. tenuissima and S. gynerioides) never reached 6% CP. Summer grasses (Digitaria californica and Trichloris crinita) ranged from 7% to 9% CP. In vitro dry matter digestibility (IVDMD) was similar among short-winter and summer grasses (40–50%). Mid-winter grasses had the lowest IVDMD for all seasons (<40%). Effects of sampling year and range condition on CP were consistently significant only for short-winter grasses. Good condition ranges provide a more acceptable forage supply than fair condition ranges.  相似文献   
56.
New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast.  相似文献   
57.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   
58.
The spider crab Maja brachydactyla is an important fisheries species in Europe. Adults were sampled in Ría de A Coruña (NW Spain) and transported to IRTA rearing facilities. Salinity and photoperiod changes and their effect on reproduction were tested in the laboratory. The number of newly hatched larvae per batch (presence of actively swimming newly hatched larvae in a broodstock tank) was counted and sampled to estimate dry weight and proximal composition. Keeping spider crab broodstock in a high salinity environment (38 ppt) significantly reduced the number of newly hatched larvae, reaching up to fivefold difference in winter. The number of newly hatched larvae produced under a natural photoperiod was 10‐fold higher than those produced using a fixed photoperiod at 34 ppt salinity during winter. No clear pattern of changes in larval dry weight, protein, lipid or carbohydrate composition was observed under the environmental conditions tested. The results show that the salinity used for broodstock maintenance, especially during the embryonic development, is an important factor causing changes in larval production of M. brachydactyla and with potential implications for recruitment success.  相似文献   
59.
We carried out a geologic survey and a preliminary archaeological survey of four fossil‐spring tufa localities in Kharga Oasis, Egypt, to constrain the timing of pluvial episodes in the Western Desert, and to document prehistoric occupation contemporaneous with times of increased rainfall. Uranium‐series dating of the tufas confirms that at least five episodes of tufa deposition are represented in Kharga, although not every event is represented at each locality. Across the region studied, tufas were most frequently deposited as part of a fluvial barrage system, characterized by terraced, vegetated pools impounded by arcuate tufa dams and separated by small waterfalls. Available water resources during pluvial phases would have included not only spring‐fed streams but also small freshwater lakes. While Earlier Stone Age (ESA) and Middle Stone Age (MSA) lithic artifacts may be found either as surficial lags on tufas, or, less commonly, encased within tufas, Epipalaeolithic and Neolithic artifacts are generally found in or on silts within surface deflation depressions in the tufas, principally at Wadi Midauwara. © 2004 Wiley Periodicals, Inc.  相似文献   
60.
Porosity, or void space, of large wood jams in stream systems has implications for estimating wood volumes and carbon storage, the impacts of jams on geomorphic and ecological processes, and instream habitat. Estimating porosity and jam dimensions (i.e. jam volume) in the field is a common method of measuring wood volume in jams. However, very few studies explicitly address the porosity values in jams, how porosity is calculated and assessed for accuracy, and the effect such estimates have on carbon and wood budgets in river corridors. We compare methods to estimate jam porosity and wood volume using field data from four different depositional environments in North America (jam types include small in-channel jams, large channel-margin jams, a large island apex jam, and a large coastal jam), and compare the results with previous studies. We find that visual estimates remain the most time-efficient method for porosity estimation in the field, although they appear to underpredict back-calculated porosity values; the accuracy of jam porosity, and thus wood volume, estimates are difficult to definitively measure. We also find that porosity appears to be scale invariant, dictated mostly by jam type, (which is influenced by depositional processes), rather than the size of the jam. Wood piece sorting and structural organization are likely the most influential properties on jam porosity, and these factors vary according to depositional environment. We provide a framework and conceptual model that uses these factors to demonstrate how modeled jam porosity values differ and give recommendations as a catalyst for future work on porosity of wood jams. We conclude that jam type and size and/or the study goals may dictate which porosity method is the most appropriate, and we call for greater transparency and reporting of porosity methods in future studies. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号