首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   7篇
  国内免费   2篇
测绘学   3篇
大气科学   7篇
地球物理   38篇
地质学   45篇
海洋学   32篇
天文学   25篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   3篇
  2016年   8篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   7篇
  2011年   11篇
  2010年   10篇
  2009年   12篇
  2008年   9篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
41.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   
42.
The thickness of the mechanical layer that hosts a group of faults can be estimated from the spacing of saturated faults (i.e. the constant spacing between faults when the fault system is fully developed and has attained its final fault density). We measured fault spacing for a group of saturated active normal faults on Miyako‐jima Island (southern Ryukyu Arc, Japan) and estimated the thickness of the faulted mechanical layer. The measured fault spacing is 1.30 ±0.14 km, and the thickness of the mechanical layer is < 3 km, which is the upper limit of the seismogenic zone. This faulted mechanical layer corresponds to a sedimentary layer in which earthquakes cannot occur. Results indicate that the shallow (< 3 km depth) normal faults on Miyako‐jima Island do not have the potential to cause medium‐size earthquakes as individual faults. The origin of the shallow normal faults might be related to the presence of a larger‐scale, deeper fault. The results indicate that fault spacing provides important information on the potential magnitude of earthquakes associated with active faults.  相似文献   
43.
In situ X-ray observations of the phase transition from ilmenite to perovskite structure in MnGeO3 were carried out in a Kawai-type high-pressure apparatus interfaced with synchrotron radiation. The phase boundary between the ilmenite and perovskite structures in the temperature range of 700–1,400°C was determined to be P (GPa) = 16.5(±0.6) − 0.0034(±0.0006)T (°C) based on Anderson’s gold pressure scale. The Clapeyron slope, dP/dT, determined in this study is consistent with that for the transition boundary between the ilmenite and the perovskite structure in MgSiO3.  相似文献   
44.
We conducted melting experiments on a low-alkali tholeiite (SiO2 ~52 wt%, MgO ~6.5 wt%, CaO/Na2O~4.4, Al2O3/SiO2 ~0.33) under both H2O-undersaturated and H2O-saturated conditions to investigate the effect of H2O on the Ca–Na partitioning between plagioclase and melt. Experiments were performed in the temperature and pressure ranges of 1,000–1,300°C and 1–5 kbar, respectively, with varying H2O contents of 0–12wt%. Redox condition was 0–2 log unit above NNO (nickel–nickel oxide) buffer. Temperature-bulk H2O diagrams for the low-alkali tholeiite are constructed at 1, 2, and 5 kbar, and compositions of near-liquidus plagioclase and coexisting melt are determined. To exclude the effect of melt composition (CaO/Na2O and Al2O3/SiO2 ratios) on plagioclase composition and to reveal the effect of H2O on An (=100×Ca/(Ca+Na)) content and (=(Ca/Na)pl/(Ca/Na)melt), we focused on the composition of near-liquidus plagioclases which crystallized from melts with nearly constant CaO/Na2O and Al2O3/SiO2 ratios. Our experimental results show that, at each experimental pressure, An content of the near-liquidus plagioclase and the KDCa-Na almost linearly increases as H2O content in melt increases. Each of the An content and the variations in a low-alkali tholeiitic system (CaO/Na2O~4.0–4.5, Al2O3/SiO2 ~0.27–0.33) can be described by one equation using temperature, pressure, and melt H2O content as parameters. An content and of liquidus plagioclase increases with increasing melt H2O and with decreasing pressure, elucidating that nearly H2O-saturated conditions of 2–3 kbar is optimal for the crystallization of the most An-rich plagioclase (>An88). We suggest this pressure condition of 2–3 kbar, corresponding to depth of 7–11 km, plays an important role for the origin of An-rich plagioclase in H2O-rich low-alkali tholeiite. At pressures more than ca. 4 kbar, crystallization of liquidus Ca-rich clinopyroxene decreases the CaO/Na2O ratio of liquid, thus prohibiting the crystallization of high-An plagioclase from hydrous tholeiite.  相似文献   
45.
A tephra layer offers an isochronous surface in sediments, thus serving as a key bed and/or an age marker. Recent high-resolution sediment research (e.g. varved sediments) has revealed optically invisible tephra fingerprints and provided high-precision tephra ages. However, a tephra-based correlation cannot succeed without detailed knowledge of the tephra characteristics in a proximal area to correlate with tephra in high-resolution sediments in remote areas. Here we documented the detailed characteristics of Towada-Chuseri (To-Cu) tephra, which is associated with the Middle Holocene volcanic explosivity index 5 eruption of Towada volcano, northeast Japan. We used To-Cu tephra samples to achieve the proximal–distal correlation of three members: Chuseri pumice (Cu), Kanegasawa pumice (Kn) and Utarube ash (Ut). These distal occurrences correlate with proximal To-Cu tephra based on volcanic glass morphology and refractive index, as well as on major element composition of volcanic glass shards. Refractive indices allow the preliminary correlation of each member, and major element composition helps in distinguishing Ut from the other members. Glass morphology provides additional support. These correlations reveal that To-Cu, especially Cu, covered central to northeast Japan while confirming that To-Cu is the representative tephra in the Middle Holocene of the Tohoku region.  相似文献   
46.
47.
An earthquake of Mw 9.0 struck the Pacific coast in northeast Japan on March 11, 2011 and was followed by a hugely damaging tsunami along 500 km of the Japanese coastline. An inland aftershock of M. 7.0 occurred on April 11; during which, surface fault ruptures appeared on land. A large variety of landslide disasters resulted from these earthquakes in various parts of northeastern Honshu, Japan. The full extent of the landslides is still being determined. This brief report introduces some of the landslide phenomena so far investigated by the Japanese Landslide Society. These are (1) failure of a water reservoir embankment dam in Sukagawa, Fukushima prefecture, (2) landslides and surface seismic fault rupture from the April 11 aftershock in Iwaki, Fukushima, (3) a concentration of surface failures at Matsushima Bay in Miyagi prefecture, and (4) small landslides on modified slopes in residential areas around Sendai city.  相似文献   
48.
49.
N-body simulations of the Magellanic stream   总被引:1,自引:0,他引:1  
A suite of high-resolution N -body simulations of the Magellanic Clouds–Milky Way system are presented and compared directly with newly available data from the H  i Parkes All-Sky Survey (HIPASS). We show that the interaction between Small Magellanic Clouds (SMC) and Large Magellanic Clouds results in both a spatial and kinematical bifurcation of both the stream and the leading arm. The spatial bifurcation of the stream is readily apparent in the HIPASS data, and the kinematical bifurcation is also tentatively identified. This bifurcation provides strong support for the tidal disruption origin for the Magellanic stream. A fiducial model for the Magellanic Clouds (MCs) is presented upon completion of an extensive parameter survey of the potential orbital configurations of the MCs and the viable initial boundary conditions for the disc of the SMC. The impact of the choice of these critical parameters upon the final configurations of the stream and leading arm is detailed.  相似文献   
50.
Modes of occurrence of Au‐ and Ag‐bearing phases and their relation with associated hypogene ore minerals were examined with the objective to elucidate Au‐Ag distribution at the Esperanza porphyry deposit in the Eocene Centinela copper belt, using ore‐microscope modal analysis, semi‐quantitative analyses by automated mineralogy, electron probe microanalysis, and secondary ion mass spectrometer. The Esperanza hypogene mineralization is characterized by early‐stage chalcopyrite‐rich veinlets in the potassic alteration zone and later polymetallic stage with tennantite and galena in the chlorite‐sericitic alteration zone. Only the early‐stage chalcopyrite contains fine‐grained electrum (Au68Ag32 ‐ Au81Ag19) and hessite (Ag2Te), and thus yields positive correlations in Cu vs. Au and Cu vs. Ag grades that are clearly recognized in the hypogene sulfide zone. The early‐stage chalcopyrite grains frequently exhibit polysynthetic twinning suggestive of inversion from intermediate solid solution. These features suggest that the fine‐grained electrum and hessite are products exsolved in the cooling process with the intermediate solid solution to chalcopyrite inversion. In contrast, tennantite and galena of the later‐stage mineralization contain no detectable Ag, and it is thus proposed that the early‐stage inverted chalcopyrite is the principal storage of economically important precious metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号