首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   2篇
  国内免费   1篇
测绘学   3篇
大气科学   10篇
地球物理   34篇
地质学   37篇
海洋学   19篇
天文学   7篇
自然地理   17篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   14篇
  2010年   12篇
  2009年   12篇
  2008年   7篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   10篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1969年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
11.
A theory of galactic morphology results from the consideration of isoplethic surfaces in states of geometric equilibrium within the theory of general relativity. In the linearized case, one solves ?2ψ+ρ2ψ=0 on the surface of an oblate spheroid with unit semimajor axis and eccentricity ε. The surface defined by $$x^2 + y^2 + z^2 /(1 - \varepsilon ^2 ) = {\text{exp (}}\psi {\text{)}}$$ are then equilibrium isopleths. The resulting morphological system contains two continuous parameters (ε and the norm of ψ) and an integer-valued parametern. The system includes the ellipticals as special cases, and the various available profiles are given for a variety of values of the parameters. The forms are sufficiently varied as to represent NGC 3115, 128, 7332, and IC 3973. These forms cease to be enigmatic for they fit into an orderly sequence progressing out of the ellipticals and have equilibrium interpretations as previously obtained only for the ellipticals.  相似文献   
12.
Deposits of open‐framework gravel occurring in gravelly streambeds can exert a significant influence on hyporheic flow. The influence was quantified using a numerical model of the hyporheic zone. The model included open‐framework gravel stratasets represented with commonly observed characteristics including a volume fraction of about one‐third of the streambed sediment, a hydraulic conductivity two orders of magnitude greater than other strata present, and a spatial connectivity forming preferential‐flow pathways. The influence of open‐framework gravel stratasets on hyporheic flow was much greater than the influence of the channel morphology including meanders, point bars, dunes, and ripples. Seventy percent of the total hyporheic exchange occurred across 30% of the channel boundary at locations of open‐framework gravel stratasets. The maximum local interfacial flux rates occurred at these locations, and were orders of magnitude greater than those at other locations. The local flux rates varied by six orders of magnitude over the channel boundary. The composite flow rate through the model with open‐framework gravel stratsets was an order of magnitude greater than that through an equivalent but homogeneous model.  相似文献   
13.
This paper addresses correlations between multiple components in structure‐specific seismic loss estimation. To date, the consideration of such correlations has been limited by methodological tractability, increased computational demand, and a paucity of data for their computation. The effect of component correlations, which arises in various forms, is however a significant factor affecting the results of structure‐specific seismic loss estimation and therefore it is prudent that adequate consideration be given to their effect. This paper provides the details of a tractable and computationally efficient seismic loss estimation methodology in which correlations can be considered. Methods to determine the necessary correlations are discussed, particularly those that can be used in the absence of sufficient empirical data, for which values are suggested based on the judgement. The effects of various assumptions regarding correlations are illustrated via application to a case‐study office structure. It is observed that certain correlation assumptions can lead to errors in excess of 50% in the lognormal standard deviation in the loss given intensity and loss hazard relationships, while full consideration of partial correlations is 50 times more computationally expensive than other assumptions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
14.
15.
Abstract

This paper covers the development of a GIS instructional module centered on the reintroduction of the Mexican Gray Wolf in the Southwest, United States. This module is used in an undergraduate geography course on the United States. The paper also reports on how forty‐one students applied the module in trying to find an appropriate location to reintroduce the wolf.  相似文献   
16.
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4–H2O system. Lower hydrates in the MgSO4–H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20–30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an ‘intermediate’ phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.  相似文献   
17.
In this paper, we investigate changes in the wave climate of the west-European shelf seas under global warming scenarios. In particular, climate change wind fields corresponding to the present (control) time-slice 1961–2000 and the future (scenario) time-slice 2061–2100 are used to drive a wave generation model to produce equivalent control and scenario wave climate. Yearly and seasonal statistics of the scenario wave climates are compared individually to the corresponding control wave climate to identify relative changes of statistical significance between present and future extreme and prevailing wave heights. Using global, regional and linked global–regional wind forcing over a set of nested computational domains, this paper further demonstrates the sensitivity of the results to the resolution and coverage of the forcing. It suggests that the use of combined forcing from linked global and regional climate models of typical resolution and coverage is a good option for the investigation of relative wave changes in the region of interest of this study. Coarse resolution global forcing alone leads to very similar results over regions that are highly exposed to the Atlantic Ocean. In contrast, fine resolution regional forcing alone is shown to be insufficient for exploring wave climate changes over the western European waters because of its limited coverage. Results obtained with the combined global–regional wind forcing showed some consistency between scenarios. In general, it was shown that mean and extreme wave heights will increase in the future only in winter and only in the southwest of UK and west of France, north of about 44–45° N. Otherwise, wave heights are projected to decrease, especially in summer. Nevertheless, this decrease is dominated by local wind waves whilst swell is found to increase. Only in spring do both swell and local wind waves decrease in average height.  相似文献   
18.
This paper is part of a larger community health study aimed at delineating the determinants of health in Sarnia. The paper specifically investigates Sarnia residents’ daily lived experiences, perceptions of and responses to living within the St. Clair River “Area of Concern” (AOC) as designated by the federal government based on the hypothesis that relatively high levels of environmental pollution in the region are negatively influencing human health. Results from in-depth interviews (N = 27) show that residents of Sarnia are conflicted by the elevation of awareness about environmental health threats by being labelled within an AOC. Residents use their emotional and sensual experiences to adopt appropriate coping strategies to live within a contaminated community. In contextualizing their everyday lived realities, residents argued that living in an AOC demands personal acceptance of the conditions in Sarnia and awareness of “bad air days” to cope with pollution exposure. Yet, residents were not willing to abandon Sarnia because of their cultural, social, and economical attachments to the place they call home. These findings suggest the need for local health policies that incorporate local concerns and perceptions of how environmental pollution affects people’s experiences and well-being. There is a necessity to involve community members as central participants in the process of policy making.  相似文献   
19.
We considered small-scale measurement of permeability in pebbly sands having coarser grains supported in a finer grained matrix (fine packing). Our central question was whether air-based measurements are representative if made with a permeameter tip seal pressed in the sand matrix. We created pebbly sands and variably sorted sands, with systematic variation in aspects of their fine packing. We made permeability measurements by inserting the tip seal of an air permeameter in the matrix of these samples and compared them to the permeability of the composite sample determined by both water-based methods and theory. The air-permeameter measurements made in this way represent the permeability of the composite mixtures of coarser and finer grains and allow for the discernment of permeability between samples with different matrix compositions, ranging from fine to coarse sand. Furthermore, the collective results show that permeability differences in the pebbly sands and variably sorted sands with fine packing, however measured, are primarily due to differences in matrix permeability and not due to differences in the size or the percentage of the coarser grains.  相似文献   
20.
The transient response of large embedded foundation elements of length-to-diameter aspect ratio D/B=2–6 is characterized by a complex stress distribution at the pier–soil interface that cannot be adequately represented by means of existing models for shallow foundations or flexible piles. On the other hand, while three-dimensional (3D) numerical solutions are feasible, they are infrequently employed in practice due to their associated cost and effort. Prompted by the scarcity of simplified models for design in current practice, we here develop an analytical model that accounts for the multitude of soil resistance mechanisms mobilized at their base and circumference, while retaining the advantages of simplified methodologies for the design of non-critical facilities. The characteristics of soil resistance mechanisms and corresponding complex spring functions are developed on the basis of finite element simulations, by equating the stiffness matrix terms and/or overall numerically computed response to the analytical expressions derived by means of the proposed Winkler model. Sensitivity analyses are performed for the optimization of the truncated numerical domain size, the optimal finite element size and the far-field dynamic boundary conditions to avoid spurious wave reflections. Numerical simulations of the transient system response to vertically propagating shear waves are next successfully compared to the analytically predicted response. Finally, the applicability of the method is assessed for soil profiles with depth-varying properties. The formulation of frequency-dependent complex spring functions including material damping is also described, while extension of the methodology to account for nonlinear soil behavior and soil–foundation interface separation is described in the conclusion and is being currently investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号