首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   6篇
  国内免费   7篇
测绘学   20篇
大气科学   17篇
地球物理   75篇
地质学   156篇
海洋学   7篇
天文学   29篇
综合类   1篇
自然地理   28篇
  2021年   3篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   13篇
  2015年   18篇
  2014年   9篇
  2013年   10篇
  2012年   15篇
  2011年   13篇
  2010年   9篇
  2009年   16篇
  2008年   21篇
  2007年   12篇
  2006年   10篇
  2005年   3篇
  2004年   6篇
  2003年   10篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1970年   2篇
  1958年   2篇
  1951年   2篇
  1948年   1篇
  1943年   1篇
  1940年   1篇
  1939年   1篇
  1937年   1篇
  1924年   1篇
排序方式: 共有333条查询结果,搜索用时 31 毫秒
121.
Analytical data on major elements and 31 trace elements in olivine nephelinites, nepheline basanites, basanitic alkali olivine basalts and their differentiates (tephrites, hawaiites, mugearites, benmoreites, latites, phonolites and trachytes) from Hegau, Kaiserstuhl, Rhön, Hessian Depression, Vogelsberg, Westerwald, Siebengebirge, E Eifel and Hocheifel are evaluated. They were based on 400 samples with new or unpublished data on about one third of the rocks. The Sr–Nd isotopic compositions for 78 rocks are included. The alkali basaltic volcanism is caused by adiabatic decompression of asthenospheric mantle updomed to a minimum depth of 50 km in connection with the Alpine continent collision. The chemical compositions of the primary basaltic melts from the different areas are similar containing about one hundred-fold enrichment of highly incompatible elements relative to the primitive mantle from partial melting of depleted and secondarily enriched peridotite. The elements Cs, K, Pb and Ti are specifically depleted in the basalts partly because of phlogopite being residual at partial melting. The Tertiary alkali basalts range in Nd-isotopic composition from 0.51288 to 0.51273 and in Sr-isotopic ratios from 0.7032 to 0.7042. These ranges indicate mixtures of HIMU, depleted and enriched mantle components in the metasomatically altered peridotite source which resembles that of certain ocean islands. The Nd-Sr-isotopic compositions of the Quaternary E Eifel are close to bulk Earth ratios. East and W Eifel plots differ distinctly from the Tertiary Hocheifel which is geographically intermediate. This isotopic difference, beside specific K/Na ratios, is probably caused by separate metasomatic pulses that immediately preceded the respective periods of volcanism. The metasomatically altered mantle had partly primitive mantle signatures (Nb/Ta, Zr/Sm and Th/U ratios) and partly ocean island (or MORB) source properties (Rb/Cs). A MORB source can be excluded because of the low K/Rb and high Th/U ratios. A correlation of D with 87Sr/86Sr in amphibole and phlogopite and a slightly larger 18O than in MORB is conformable with a seawater and crustal impact on the source of alkali basalts. Slightly higher than average water concentrations in the source of certain primary basaltic melts (indicated by amphibole phenocrysts in their basalts) are required for differentiation of these basalts in magma chambers of the upper crust. Model calculations are presented to explain compositions of differentiates which range from about 60% to about 20% residual melt. The latter are represented by phonolites and trachytes. The Nd- and Sr-isotopic signatures of the majority of differentiates indicate contamination by a granitic partial melt from the wall rocks of magma chambers. Olivine nephelinite magma was the common source of contaminated differentiates.  相似文献   
122.
123.
Summary In ammunition sunk into the sea off the Danish coasts two large explosions occurred. Records of the resulting shocks were obtained at K?benhavn, Lund and G?ttingen. These are discussed and compared with those of some mine-explosions and of the earthquake of Oct. 31. 1930, 23h. Some macroseismic evidence is given and the methods available for the evaluation of the energy of the shocks are discussed.  相似文献   
124.
Natural Resources Research - Understanding the geochemistry of waters produced during petroleum extraction is essential to informing the best treatment and reuse options, which can potentially be...  相似文献   
125.
126.
In situ U-Pb SHRIMP analysis of hydrothermal monazite virtually free of Th and poor in U (<0.2 ppm Th, 40-103 ppm U) from the world-class Llallagua tin porphyry deposit in Bolivia defines a mineralization age of 23.4 ± 2.2 Ma (MSWD 0.48) confirming earlier K-Ar sericite alteration age data. These ages are, however, in contrast with a weighted mean single crystal 207Pb/206Pb evaporation age of 39.3 ± 6.0 Ma, and a related Pb-Pb inverse isochron age of 42.4 ± 4.0 Ma (MSWD 0.66) on zircon from a post-porphyry dike, as well as with an earlier single crystal Sm-Nd apatite isochron age.Our data points to a significant time gap between emplacement of the ore-hosting porphyry intrusion (magmatism) and its hydrothermal overprint (tin mineralization), suggesting long-lived magmatic-hydrothermal activity in this part of the Andean back-arc crust. The decoupling of porphyry magmatism and hydrothermal activity may explain the unusual occurrence of relatively little fractionated felsic rocks together with extensive tin mineralization.Our study demonstrates the usefulness of the application of the U-Pb SHRIMP method to direct age determination of ore mineralization using Th-poor hydrothermal monazite even when dealing with geological young events. The common assumption of synchronous magmatism and hydrothermal ore formation in porphyry systems may not always be warranted.  相似文献   
127.
The aim of this work was to investigate changes in molecular form and surface charge of black carbon (BC) due to long-term natural oxidation and to examine how climatic and soil factors affect BC oxidation. Black C was collected from 11 historical charcoal blast furnace sites with a geographic distribution from Quebec, Canada, to Georgia, USA, and compared to BC that was newly produced (new BC) using rebuilt historical kilns. The results showed that the historical BC samples were substantially oxidized after 130 years in soils as compared to new BC or BC incubated for one year. The major alterations by natural oxidation of BC included: (1) changes in elemental composition with increases in oxygen (O) from 7.2% in new BC to 24.8% in historical BC and decreases in C from 90.8% to 70.5%; (2) formation of oxygen-containing functional groups, particularly carboxylic and phenolic functional groups, and (3) disappearance of surface positive charge and evolution of surface negative charge after 12 months of incubation. Although time of exposure significantly increased natural oxidation of BC, a significant positive relationship between mean annual temperature (MAT) and BC oxidation (O/C ratio with r = 0.83; P < 0.01) explained that BC oxidation was increased by 87 mmole kg C−1 per unit Celsius increase in MAT. This long-term oxidation was more pronounced on BC surfaces than for entire particles, and responded 7-fold stronger to increases in MAT. Our results also indicated that oxidation of BC was more important than adsorption of non-BC. Thus, natural oxidation of BC may play an important role in the effects of BC on soil biogeochemistry.  相似文献   
128.
Rietveld refinement of neutron powder diffraction data on four samples of synthetic, iron-bearing tetrahedrite (Cu12?xFexSb4S13) with x = 0.28, 0.69, 0.91, 2.19 and four samples of synthetic tennantite (Cu12?xFexAs4S13) with x = 0.33, 0.38, 0.86, 1.5 indicate unambiguously that iron is incorporated into tetrahedral M1 (12d) sites and not into triangular M2 (12e) sites in the cubic crystal structure (space group I $ \ifmmode\expandafter\bar\else\expandafter\=\fi{4} Rietveld refinement of neutron powder diffraction data on four samples of synthetic, iron-bearing tetrahedrite (Cu12−xFexSb4S13) with x = 0.28, 0.69, 0.91, 2.19 and four samples of synthetic tennantite (Cu12−xFexAs4S13) with x = 0.33, 0.38, 0.86, 1.5 indicate unambiguously that iron is incorporated into tetrahedral M1 (12d) sites and not into triangular M2 (12e) sites in the cubic crystal structure (space group I 3 m). The refinement results also confirm that M2 is a split (24g), flat-pyramidal site situated statistically on both sides of the S1−S1–S2 triangle. In tetrahedrite, this split is about 0.6 ?, in tennantite about 0.7 ?. Trends in bond lengths and magnitude of the M2 split were evaluated by means of linear regression with Fe concentration as the independent variable.  相似文献   
129.
The Chandman massif, a typical structure of the Mongolian Altai, consists of a migmatite–magmatite core rimmed by a lower grade metamorphic envelope of andalusite and cordierite‐bearing schists. The oldest structure in the migmatite–magmatite core is a subhorizontal migmatitic foliation S1 parallel to rare granitoid sills. This fabric is folded by upright folds F2 and transposed into a vertical migmatitic foliation S2 that is syn‐tectonic, with up to several tens of metres thick granitoid sills. Sillimanite–ilmenite–magnetite S1 inclusion trails in garnet constrain the depth of equilibration during the S1 fabric to 6–7 kbar at 710–780 °C. Reorientation of sillimanite into the S2 fabric indicates that the S1–S2 fabric transition occurred in the sillimanite stability field. The presence of cordierite, and garnet rim chemistry point to decompression to 3–4 kbar and 680–750 °C during development of the S2 steep fabric, and post‐tectonic andalusite indicates further decompression to 2–3 kbar and 600–650 °C. Widespread crystallization of post‐tectonic muscovite is explained by the release of H2O from crystallizing partial melt. In the metamorphic envelope the subhorizontal metamorphic schistosity S1 is heterogeneously affected by upright F2 folds and axial planar subvertical cleavage S2. In the north, the inclusion trails in garnet are parallel to the S1 foliation, and the garnet zoning indicates nearly isobaric heating from 2.5 to 3 kbar and 500–530 °C. Cordierite contains crenulated S1 inclusion trails and has pressure shadows related to the formation of the S2 fabric. The switch from the S1 to the S2 foliation occurred near 2.5–3 kbar and 530–570 °C; replacement of cordierite by fine‐grained muscovite and chlorite indicates further retrogression and cooling. In the south, andalusite containing crenulated inclusion trails of ilmenite and magnetite indicates heating during the D2 deformation at 3–4 kbar and 540–620 °C. Monazite from a migmatite analysed by LASS yielded elevated HREE concentrations. The grain with the best‐developed oscillatory zoning is 356 ± 1.0 [±7] Ma (207Pb‐corrected 238U/206Pb), considered to date the crystallization from melt in the cordierite stability ~680 °C and 3.5 kbar, whereas the patchy BSE‐dark domains give a date of 347 ± 4.2 [±7] Ma interpreted as recrystallization at subsolidus conditions. The earliest sub‐horizontal fabric is associated with the onset of magmatism and peak of P–T conditions in the deep crust, indicating important heat input associated with lower crustal horizontal flow. The paroxysmal metamorphic conditions are connected with collapse of the metamorphic structure, an extrusion of the hot lower crustal rocks associated with vertical magma transfer and a juxtaposition of the hot magmatite–migmatite core with supracrustal rocks. This study provides information about tectono‐thermal history and time‐scales of horizontal flow and vertical mass and heat transfer in the Altai orogen. It is shown that, similar to collisional orogens, doming of partially molten rocks assisted by syn‐orogenic magmatism can be responsible for the exhumation of orogenic lower crust in accretionary orogenic systems.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号